# NOT RUN {
# Nice plot (produces the really nice Fig. 10-2 in the book)
# RNGkind(sample.kind = "Rounding") # run this for R >= 3.6.0
set.seed(117, kind="Mersenne-Twister")
str(dat <- simPPe(lscape.size = 200, buffer.width = 25, variance.X = 1,
theta.X = 70, M = 200, beta = 1, quads.along.side = 6))
# }
# NOT RUN {
# Smaller study area, fewer individuals (M)
str(dat <- simPPe(lscape.size = 24, buffer.width = 2, variance.X = 1,
theta.X = 10, M = 50, beta = 1, quads.along.side = 6))
# Stronger habitat heterogeneity (variance.X): more aggregation
str(dat <- simPPe(lscape.size = 24, buffer.width = 2, variance.X = 10,
theta.X = 10, M = 50, beta = 1, quads.along.side = 6))
# Longer habitat gradient (theta.X)
str(dat <- simPPe(lscape.size = 24, buffer.width = 2, variance.X = 1,
theta.X = 100, M = 250, beta = 1, quads.along.side = 6))
# No habitat variability (variance.X): homogeneous point process
str(dat <- simPPe(lscape.size = 24, buffer.width = 2, variance.X = 0,
theta.X = 10, M = 100, beta = 1, quads.along.side = 6))
# No habitat preference (beta): homogeneous point process
str(dat <- simPPe(lscape.size = 24, buffer.width = 2, variance.X = 1,
theta.X = 10, M = 100, beta = 0, quads.along.side = 6))
# Habitat heterogeneity at very small scale (theta.X)
str(dat <- simPPe(lscape.size = 1000, buffer.width = 20, variance.X = 1,
theta.X = 0.001, M = 250, beta = 1, quads.along.side = 6))
str(simPPe(M = 1)) # Often produces no point at all
str(simPPe(M = 10))
str(simPPe(M = 100))
str(simPPe(M = 1000))
str(simPPe(M = 20, quads.along.side = 100)) # Lots of small sites
str(simPPe(M = 20, quads.along.side = 10))
str(simPPe(M = 20, quads.along.side = 5))
str(simPPe(M = 20, quads.along.side = 1)) # whole study area is 1 site
# }
Run the code above in your browser using DataLab