AICc(mod, return.K = FALSE, c.hat = 1, second.ord = TRUE, nobs = NULL) AICc.clm(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL)
AICc.clmm(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL)
AICc.coxph(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL)
AICc.glm(mod, return.K = FALSE, c.hat = 1, second.ord = TRUE,
nobs = NULL)
AICc.gls(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL)
AICc.lme(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL)
AICc.mer(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL)
AICc.merMod(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL)
AICc.mult(mod, return.K = FALSE, c.hat = 1, second.ord = TRUE,
nobs = NULL)
AICc.nlme(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL)
AICc.nls(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL)
AICc.polr(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL)
AICc.rlm(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL)
AICc.unmarked(mod, return.K = FALSE, c.hat = 1, second.ord = TRUE,
nobs = NULL)
'AICc.clm' returns the AIC or AICc depending on the values of the arguments.
'AICc.clmm' returns the AIC or AICc depending on the values of the arguments.
'AICc.coxph' returns the AIC or AICc depending on the values of the arguments.
'AICc.glm' returns the AIC, AICc, QAIC, or QAICc depending on the values of the arguments.
'AICc.gls' returns the AIC or AICc depending on the values of the arguments.
'AICc.lme' returns the AIC or AICc depending on the values of the arguments.
'AICc.mer' returns the AIC or AICc depending on the values of the arguments.
'AICc.merMod' returns the AIC or AICc depending on the values of the arguments.
'AICc.mult' returns the AIC, AICc, QAIC, or QAICc depending on the values of the arguments.
'AICc.nlme' returns the AIC or AICc depending on the values of the arguments.
'AICc.nls' returns the AIC or AICc depending on the values of the arguments.
'AICc.polr' returns the AIC or AICc depending on the values of the arguments.
'AICc.rlm' returns the AIC or AICc depending on the values of the arguments.
'AICc.unmarked' returns the AIC, AICc, QAIC, or QAICc depending on the values of the arguments.
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Burnham, K. P., Anderson, D. R. (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research 33, 261--304.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577--587.
Hurvich, C. M., Tsai, C.-L. (1991) Bias of the corrected AIC criterion for underfitted regression and time series models. Biometrika 78, 499--509.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248--2255.
Pinheiro, J. C., Bates, D. M. (2000) Mixed-effect models in S and S-PLUS. Springer Verlag: New York.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108--115.
Sugiura, N. (1978) Further analysis of the data by Akaike's information criterion and the finite corrections. Communications in Statistics: Theory and Methods A7, 13--26.
aictab
, confset
, importance
,
evidence
, c_hat
, modavg
,
modavg.shrink
, modavgpred
##cement data from Burnham and Anderson (2002, p. 101)
data(cement)
##run multiple regression - the global model in Table 3.2
glob.mod <- lm(y ~ x1 + x2 + x3 + x4, data = cement)
##compute AICc with full likelihood
AICc(glob.mod, return.K = FALSE)
##compute AIC with full likelihood
AICc(glob.mod, return.K = FALSE, second.ord = FALSE)
##note that Burnham and Anderson (2002) did not use full likelihood
##in Table 3.2 and that the MLE estimate of the variance was
##rounded to 2 digits after decimal point
##compute AICc for mixed model on Orthodont data set in Pinheiro and
##Bates (2000)
require(nlme)
m1 <- lme(distance ~ age, random = ~1 | Subject, data = Orthodont,
method= "ML")
AICc(m1, return.K = FALSE)
Run the code above in your browser using DataLab