Learn R Programming

AIPW (version 0.6.9.2)

Repeated: Repeated Crossfitting Procedure for AIPW

Description

An R6Class that allows repeated crossfitting procedure for an AIPW object

Arguments

Value

AIPW object

Constructor

Repeated$new(aipw_obj = NULL)

Constructor Arguments

ArgumentTypeDetails
aipw_objAIPW objectan AIPW object

Public Methods

MethodsDetailsLink
repfit()Fit the data to the AIPW object num_reps timesrepfit.Repeated
summary_median()Summary (median) of estimates from the repfit()summary_median.Repeated

Public Variables

VariableGenerated byReturn
repeated_estimatesrepfit()A data.frame of estiamtes form num_reps cross-fitting
repeated_resultssummary_median()A list of sumarised estimates
resultsummary_median()A data.frame of sumarised estimates

Public Variable Details

repeated_estimates

Estimates from num_reps cross-fitting.

result

Summarised estimates from ``repeated_estimates` using median methods.

Details

See examples for illustration.

References

Zhong Y, Kennedy EH, Bodnar LM, Naimi AI (2021). AIPW: An R Package for Augmented Inverse Probability Weighted Estimation of Average Causal Effects. American Journal of Epidemiology.

Robins JM, Rotnitzky A (1995). Semiparametric efficiency in multivariate regression models with missing data. Journal of the American Statistical Association.

Chernozhukov V, Chetverikov V, Demirer M, et al (2018). Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal.

Kennedy EH, Sjolander A, Small DS (2015). Semiparametric causal inference in matched cohort studies. Biometrika.

Examples

Run this code
library(SuperLearner)
library(ggplot2)

#create an object
aipw_sl <- AIPW$new(Y=rbinom(100,1,0.5), A=rbinom(100,1,0.5),
                    W.Q=rbinom(100,1,0.5), W.g=rbinom(100,1,0.5),
                    Q.SL.library="SL.mean",g.SL.library="SL.mean",
                    k_split=2,verbose=FALSE)

#create a repeated crossfitting object from the previous step
repeated_aipw_sl <- Repeated$new(aipw_sl)

#fit repetitively (stratified = TRUE will use stratified_fit() method in AIPW class)
repeated_aipw_sl$repfit(num_reps = 3, stratified = FALSE)

#summarise the results
repeated_aipw_sl$summary_median()

Run the code above in your browser using DataLab