Learn R Programming

AMIM

The goal of AMIM is to provide an easy function to compute the rolling window AMIM following the paper of Tran & Leirvik (2019), “A simple but powerful measure of market efficiency”. Finance Research Letters, 29, pp.141-151.

Installation

You can install the released version of AMIM from CRAN with:

install.packages("AMIM")

Example

This is a basic example which shows you how to solve a common problem:

library(AMIM)
library(data.table)

data <- AMIM::exampledata # load the example data

AMIM <- AMIM.roll(data.table = data, identity.col = "ticker", rollWindow = 60, Date.col = "Date", return.col = "RET", min.obs = 30, max.lag = 10)
#>   |                                                                              |                                                                      |   0%  |                                                                              |===                                                                   |   4%  |                                                                              |======                                                                |   8%  |                                                                              |=========                                                             |  12%  |                                                                              |============                                                          |  17%  |                                                                              |===============                                                       |  21%  |                                                                              |==================                                                    |  25%  |                                                                              |====================                                                  |  29%  |                                                                              |=======================                                               |  33%  |                                                                              |==========================                                            |  38%  |                                                                              |=============================                                         |  42%  |                                                                              |================================                                      |  46%  |                                                                              |===================================                                   |  50%  |                                                                              |======================================                                |  54%  |                                                                              |=========================================                             |  58%  |                                                                              |============================================                          |  62%  |                                                                              |===============================================                       |  67%  |                                                                              |==================================================                    |  71%  |                                                                              |====================================================                  |  75%  |                                                                              |=======================================================               |  79%  |                                                                              |==========================================================            |  83%  |                                                                              |=============================================================         |  88%  |                                                                              |================================================================      |  92%  |                                                                              |===================================================================   |  96%  |                                                                              |======================================================================| 100%
AMIM[, .SD[(.N - 5):(.N), ], by = ticker] # show the last 5 observations for each ticker
#>     ticker  N       Date       MIM        CI        AMIM
#>  1:      A  2 2021-07-06 0.7044131 0.7604725 -0.23404162
#>  2:      A  2 2021-07-07 0.7044131 0.7604725 -0.23404162
#>  3:      A  3 2021-07-08 0.8058670 0.8110500 -0.02743054
#>  4:      A  3 2021-07-09 0.8017444 0.8110500 -0.04924920
#>  5:      A  3 2021-07-10 0.8017444 0.8110500 -0.04924920
#>  6:      A  3 2021-07-11 0.8017444 0.8110500 -0.04924920
#>  7:      B NA 2021-07-06        NA        NA          NA
#>  8:      B NA 2021-07-07        NA        NA          NA
#>  9:      B NA 2021-07-08        NA        NA          NA
#> 10:      B NA 2021-07-09        NA        NA          NA
#> 11:      B NA 2021-07-10        NA        NA          NA
#> 12:      B NA 2021-07-11        NA        NA          NA

Copy Link

Version

Install

install.packages('AMIM')

Monthly Downloads

404

Version

1.0.0

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Vu Le Tran

Last Published

July 7th, 2023

Functions in AMIM (1.0.0)

AMIM.roll

AMIM roll
exampledata

Example Data to compute AMIM
CI

Confidence Interval Data to compute AMIM