Learn R Programming

AMModels (version 0.1.4)

methods-amModel: Methods For Displaying, Summarizing, And Manipulating amModel And amData Objects

Description

Getters and setters for models and data.

Usage

# S4 method for amModel
summary(object, ...)

# S4 method for amModel,ANY,ANY,ANY [(x, i, j, ..., drop = TRUE)

# S4 method for amModel,ANY,ANY [[(x, i)

# S4 method for amModel,ANY,ANY [(x, i, j, ...) <- value

# S4 method for amModel,ANY,ANY [[(x, i) <- value

# S4 method for amData summary(object, ...)

# S4 method for amData,ANY,ANY,ANY [(x, i, j, ..., drop = TRUE)

# S4 method for amData,ANY,ANY [[(x, i)

# S4 method for amData,ANY,ANY [(x, i, j, ...) <- value

# S4 method for amData,ANY,ANY [[(x, i) <- value

Arguments

object, x

An amModel or amData object.

Additional arguments passed to other functions or methods.

i, j

indices specifying elements to extract or replace. Indices are numeric or character vectors or empty (missing) or NULL.

drop

Not used.

value

Replacement value.

Details

Summary assumes some meaningful summary method exists for each object in its home package.

Examples

Run this code
# NOT RUN {
# create dataset from lm helpfile
## Annette Dobson (1990) "An Introduction to Generalized Linear Models".
## Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2, 10, 20, labels = c("Ctl","Trt"))
weight <- c(ctl, trt)
lm.D9 <- lm(weight ~ group)
lm.D90 <- lm(weight ~ group - 1) # omitting intercept


# create am amModel object
full.model <- amModel(
    model = lm.D9, 
    comment = 'full model', 
    source = 'lm helpfile (R).', 
    taxa = 'plants', 
    data = 'plant.data'
)


# create an amData object
plant.data <- data.frame(group = group, weight = weight)
plant.data <- amData(
    data = plant.data, 
    source = 'lm helpfile (R).',
    comment = 'Dataset from lm helpfile.'
)

summary(full.model)

# [ and [[ index from metadata
full.model[c(2,1)]
full.model[[1]]
full.model[['taxa']]

plant.data[c(2,1)]
plant.data[[1]]
plant.data[['comment']]

# }

Run the code above in your browser using DataLab