
Take a prior mean and precision matrix for the regression solution and uses them to solve for the regression parameters. The Bayesian model, here, is on the multivariate distribution of the parameters.
bayesianlm(X, y, priorMean, priorPrecision, priorIntercept = 0, regweights,
includeIntercept = F)
data matrix
outcome
expected parameters
inverse covariance matrix of the parameters -
inverse covariance matrix of the parameters -
weights on each y, a vector as in lm
include the intercept in the model
bayesian regression solution is output
# NOT RUN {
# make some simple data
set.seed(1)
n<-20
rawvars<-sample(1:n)
nois<-rnorm(n)
# for some reason we dont know age is correlated w/noise
age<-as.numeric(rawvars)+(abs(nois))*sign(nois)
wt<-( sqrt(rawvars) + rnorm(n) )
mdl<-lm( wt ~ age + nois )
summary(mdl)
X<-model.matrix( mdl )
priorcoeffs<-coefficients(mdl)
covMat<-diag(length(priorcoeffs))+0.1
# make some new data
rawvars2<-sample(1:n)
nois2<-rnorm(n)
# now age is correlated doubly w/noise
age2<-as.numeric(rawvars2)+(abs(nois2))*sign(nois2)*2.0
wt2<-( sqrt(rawvars2) + rnorm(n) )
mdl2<-lm( wt2 ~ age2 + nois2 )
X2<-model.matrix( mdl2 )
precisionMat<-solve( covMat )
precisionMat[2,2]<-precisionMat[2,2]*1.e3 # heavy prior on age
precisionMat[3,3]<-precisionMat[3,3]*1.e2 # some prior on noise
bmdl<-bayesianlm( X2, wt2, priorMean=priorcoeffs, precisionMat )
bmdlNoPrior<-bayesianlm( X2, wt2 )
print(priorcoeffs)
print(bmdl$beta)
print(bmdlNoPrior$beta)
# }
# NOT RUN {
fn<-'PEDS012_20131101_pcasl_1.nii.gz'
fn<-getANTsRData("pcasl")
# image available at http://files.figshare.com/1701182/PEDS012_20131101.zip
asl<-antsImageRead(fn,4)
tr<-antsGetSpacing(asl)[4]
aslmean<-getAverageOfTimeSeries( asl )
aslmask<-getMask(aslmean,lowThresh=mean(aslmean),cleanup=TRUE)
aslmat<-timeseries2matrix(asl,aslmask)
tc<-as.factor(rep(c('C','T'),nrow(aslmat)/2))
dv<-computeDVARS(aslmat)
# do some comparison with a single y, no priors
y<-rowMeans(aslmat)
perfmodel<-lm( y ~ tc + dv ) # standard model
tlm<-bigLMStats( perfmodel )
X<-model.matrix( perfmodel )
blm<-bayesianlm( X, y )
print( tlm$beta.p )
print( blm$beta.p )
# do some bayesian learning based on the data
perfmodel<-lm( aslmat ~ tc + dv ) # standard model
X<-model.matrix( perfmodel )
perfmodel<-lm( aslmat ~ tc + dv )
bayesianperfusionloc<-rep(0,ncol(aslmat))
smoothcoeffmat<-perfmodel$coefficients
nmatimgs<-list()
for ( i in 1:nrow(smoothcoeffmat) )
{
temp<-antsImageClone( aslmask )
temp[ aslmask == 1 ] <- smoothcoeffmat[i,]
# temp<-iMath(temp,'PeronaMalik',150,10)
temp<-smoothImage(temp,1.5)
nmatimgs[[i]]<-getNeighborhoodInMask(temp,aslmask,
rep(2,3), boundary.condition = 'mean')
smoothcoeffmat[i,]<-temp[ aslmask==1 ]
}
prior <- rowMeans( smoothcoeffmat )
invcov <- solve( cov( t( smoothcoeffmat ) ) )
blm2<-bayesianlm( X, y, prior, invcov*1.e4 )
print( blm2$beta.p )
for ( i in 1:ncol(aslmat) )
{
parammat<-nmatimgs[[1]][,i]
for ( k in 2:length(nmatimgs))
parammat<-cbind( parammat, nmatimgs[[k]][,i] )
locinvcov<-solve( cov( parammat ) )
localprior<-(smoothcoeffmat[,i])
blm<-bayesianlm( X, aslmat[,i], localprior, locinvcov*1.e4 )
bayesianperfusionloc[i]<-blm$beta[1]
}
perfimg<-antsImageClone(aslmask)
basicperf<-bigLMStats( perfmodel )$beta[1,]
perfimg[ aslmask == 1 ]<-basicperf
antsImageWrite(perfimg,'perf.nii.gz')
perfimg[ aslmask == 1 ]<-bayesianperfusionloc
antsImageWrite(perfimg,'perf_bayes.nii.gz')
print( cor.test(basicperf, perfimg[ aslmask == 1 ] ) )
# }
Run the code above in your browser using DataLab