Free Access Week-  Data Engineering + BI
Data engineering and BI courses are free!
Free AI Access Week from June 2-8

ANTsR (version 0.3.3)

quantifyCBF: quantifyCBF

Description

Computes CBF from ASL - pasl or pcasl

Usage

quantifyCBF(perfusion, mask, parameters, M0val = NA, outlierValue = 0.02)

Arguments

perfusion
input asl matrix
mask
3D image mask (antsImage)
parameters
list with entries for sequence and m0 (at minimimum)
M0val
baseline M0 value (optional)
outlierValue
trim outliers by this fractional value (optional)

Value

a list is output with 3 types of cbf images

Examples

Run this code

  ## Not run: 
#   if (!exists("fn") ) fn<-getANTsRData("pcasl")
#   # PEDS029_20101110_pcasl_1.nii.gz # high motion subject
#   asl<-antsImageRead(fn)
# # image available at http://files.figshare.com/1701182/PEDS012_20131101.zip
#   pcasl.bayesian <- aslPerfusion( asl,
#         dorobust=0., useDenoiser=4, skip=11, useBayesian=1000,
#         moreaccurate=0, verbose=T, maskThresh=0.5 ) # throw away lots of data
# # user might compare to useDenoiser=FALSE
#   pcasl.parameters <- list( sequence="pcasl", m0=pcasl.bayesian$m0 )
#   cbf <- quantifyCBF( pcasl.bayesian$perfusion, pcasl.bayesian$mask,
#      pcasl.parameters )
#   meancbf <- cbf$kmeancbf
#   print(mean(meancbf[ pcasl.bayesian$mask==1 ]))
#   antsImageWrite( meancbf , "temp.nii.gz")
#   pcasl.processing <- aslPerfusion( asl, moreaccurate=0,
#     dorobust=0.95, useDenoiser=NA, skip=5,  useBayesian=0 )
#   # user might compare to useDenoiser=FALSE
#   pcasl.parameters <- list( sequence="pcasl", m0=pcasl.processing$m0 )
#   cbf <- quantifyCBF( pcasl.processing$perfusion, pcasl.processing$mask, pcasl.parameters )
#   meancbf <- cbf$kmeancbf
#   print(mean(meancbf[ pcasl.processing$mask==1 ]))
#   antsImageWrite( meancbf , "temp2.nii.gz" )
#   plot(  meancbf, slices="1x50x1" )
#   ## End(Not run)

Run the code above in your browser using DataLab