Learn R Programming

APML (version 0.0.5)

uncertainty: Calculate the Uncertainty (95 percent confidence interval) of Risk Ratio Based on Threshold.

Description

Calculate the uncertainty (95 percent confidence interval) of risk ratio with prediction from general models based on threshold.

Usage

uncertainty(x,y,th,ref=0)

Arguments

x

A vector representing the risk factor.

y

A vector representing the outcome prediction probability.

th

Threshold for dividing the risk facot into two groups.

ref

Reference indicator. If 0, set the group lower than threshold as reference. Default:0

Value

Uncertainty (95 percent confidence interval) of risk ratio.

Details

This is used to calculate the risk ratio, but not for odd ratio.

References

D<U+00ED>az-Franc<U+00E9>s, E., Rubio, F.J. On the existence of a normal approximation to the distribution of the ratio of two independent normal random variables. Stat Papers 54, 309-C323 (2013).

Examples

Run this code
# NOT RUN {
library(h2o)
data(iris)
attach(iris)
h2o.init()
hyper <- list(ntrees=c(2,3,5))
iris <- iris[1:100,c(5,1:4)]
idx <- sample(100,50)
traindata <- iris[idx,]
testdata <- iris[-idx,]
xcol <- names(iris)[2:5]
results <- APML(xcol=xcol,hyper=hyper,
                traindata=traindata,testdata=testdata,
                sort_by ='auc',distribution = 'bernoulli')
data <- as.h2o(iris)
pred<- h2o.predict(results$bestmodel,newdata=data)
data <- h2o.cbind(data,pred)
data <- as.data.frame(data)
plots <- expl_rr(data,setosa~Sepal.Length,ref = 'mean')
uncertainty(data$Sepal.Length,data$setosa,plots$threshold)
h2o.shutdown(prompt=FALSE)
Sys.sleep(2)
# }

Run the code above in your browser using DataLab