# NOT RUN {
### Linear model ###
set.seed(1213)
N=100;p=30;p1=5
x=matrix(rnorm(N*p),N,p)
beta=rnorm(p1)
xb=x[,1:p1]%*%beta
y=rnorm(N,xb)
fiti=APML0(x,y,penalty="Lasso",nlambda=10) # Lasso
fiti2=APML0(x,y,penalty="Lasso",nlambda=10,nfolds=10) # Lasso
# attributes(fiti)
### Logistic model ###
set.seed(1213)
N=100;p=30;p1=5
x=matrix(rnorm(N*p),N,p)
beta=rnorm(p1)
xb=x[,1:p1]%*%beta
y=rbinom(n=N, size=1, prob=1.0/(1.0+exp(-xb)))
fiti=APML0(x,y,family="binomial",penalty="Lasso",nlambda=10) # Lasso
fiti2=APML0(x,y,family="binomial",penalty="Lasso",nlambda=10,nfolds=10) # Lasso
# attributes(fiti)
### Cox model ###
set.seed(1213)
N=100;p=30;p1=5
x=matrix(rnorm(N*p),N,p)
beta=rnorm(p1)
xb=x[,1:p1]%*%beta
ty=rexp(N, exp(xb))
td=rexp(N, 0.05)
tcens=ifelse(td<ty,1,0) # censoring indicator
y=cbind(time=ty,status=1-tcens)
fiti=APML0(x,y,family="cox",penalty="Lasso",nlambda=10) # Lasso
fiti2=APML0(x,y,family="cox",penalty="Lasso",nlambda=10,nfolds=10) # Lasso
# attributes(fiti)
# }
Run the code above in your browser using DataLab