
Last chance! 50% off unlimited learning
Sale ends in
ARTIVAsubnet
.
A graphical representation in a pdf file and estimated values are
provided in text files.
This function is used in function ARTIVAsubnet
when parameter segmentAnalysis=TRUE
. This function can be used
separately for re-computing a time-varying network from the output of function
ARTIVAsubnet
with new analysis parameters
segMinLength
, edgesThreshold
, CPpos
,
layout
, ... see detail below.
ARTIVAsubnetAnalysis(ARTIVAsubnet=NULL, CPpostDist=NULL, CPsamples=NULL,
coefSamples=NULL, TFnumber=NULL, segMinLength=2, edgesThreshold=0.5,
burn_in=NULL, CPpos=NULL,targetData=NULL, parentData=NULL,
targetName=NULL,parentNames=NULL, savePictures=TRUE,saveEstimations=TRUE,
outputPath=NULL,layout="fruchterman.reingold", silent=FALSE,
inARTIVAsubnet=FALSE , onepage= FALSE)
ARTIVAsubnet
, a list containing Samples
,
Counters
, CPpostDist
, nbSegs
,
SegmentPostDist
, network
, ...
(optional, default: ARTIVAsubnet=NULL
, if
ARTIVAsubnet=NULL
then parameters CPpostDist
,
CPsamples
, coefSamples
, TFnumber
must be not null.
CPpostDist$CPnumberPostDist
: A table containing the distribution for
the number of CPs approximated with ARTIVAsubnet
.
2)CPpostDist$CPpositionPostDist
: A table containing the distribution for the position of the CPs approximated with ARTIVAsubnet
.
(optional, default: CPpostDist=NULL
, but
CPpostDist
must be given when parameter ARTIVAsubnet=NULL
)ARTIVAsubnet
function and in column the identified positions for CPs. (optional, default: CPsamples=NULL
, but
CPsamples
must be given when parameter ARTIVAsubnet=NULL
)
ARTIVAsubnet
function and in column the
coefficient values corresponding to the identified regulatory interactions.
(optional, default: coefSamples=NULL
, but
coefSamples
must be given when parameter ARTIVAsubnet=NULL
) parentData
used in the ARTIVAsubnet
function.
(optional, default: TFnumber=NULL
, but
TFnumber
must be given when parameter ARTIVAsubnet=NULL
)targetData
and parentData
(optional, default: segMinLength=2
).segmentAnalysis=TRUE
(optional, default: edgesThreshold=0.5
).
ARTIVAsubnet
function is a RJ-MCMC
algorithm which, at each iteration, randomly samples a new
configuration of the time-varying regulatory network from
probability distributions based on constructing a Markov chain that
has the network model distribution as its equilibrium distribution
(The equilibrium distribution is obtained when the Markov Chain
converges, which requires a large number of iterations).
Typically, initial iterations are notconfident because the Markov
Chain has not stabilized. The burn-in samples allow to not consider
these initial iterations in the final analysis (optional, default:
burn_in=NULL
, if burn_in=NULL
then the first 25% of
the iterations is left for burn_in
).
CPpos=NULL
, if CPpos=NULL
then CPpos
is
evaluated as in CP.postDist
function. )
targetData=NULL
, if not null then
the target data is plotted).
parentData=NULL
, if not null then
the parent data is plotted).
parentNames=NULL
).
TRUE
all estimated posterior distributions and
networks are plotted in a pdf file either in a new sub folder named
"ARTIVA_Results" created by default in the current folder or in a
folder specified with argument outputPath
(see below)
(optional, default: savePictures=TRUE
).TRUE
all estimated posterior distributions are saved
as text files either in a new sub folder named "ARTIVA_Results" created
by default in the current folder or in a folder specified with argument
outputPath
(see below) (optional, default:
saveEstimations=TRUE
).outputPath=NULL
)."random",
"circle",
"sphere",
"fruchterman.reingold",
"kamada.kawai",
"spring",
"reingold.tilford",
"fruchterman.reingold.grid"
,
see package igraph0
for more details (default:
layout="fruchterman.reingold"
).TRUE
messages are printed along the ARTIVA procedure (optional, default: silent=FALSE
).
TRUE
, general information already printed in
function ARTIVAsubnet
are not printed a second time (optional, default: inARTIVAsubnet=FALSE
).
TRUE
, all output pictures are plotted on one page
only (optional, default: onepage=FALSE
.
CPpostDist$CPnumberPostDist
).
nbSegs
temporal segments, according to
CPnumber
, CPposition
and segMinLength
(if
parameter dyn=1
, first CP is 2
and final CP is
n+1
, where n
is the number of time points).
segmentModel.postDist
. A list of tables:1) SegmentPostDist$CPpos
: A table containing the most
significant CP positions that delimit nbSegs
temporal segments,
according to CPpostDist$CPnumber
, CPpostDist$CPposition
and
segMinLength
(if parameter dyn=1
, first CP is 2
and final CP is n+1
, where n
is the number of time points).2) SegmentPostDist$edgesPostDist
: A table containing the approximate posterior distribution for the incoming edges (regulatory
interaction between parent and target genes) for each temporal segment
delimited by the CP given in SegmentPostDist$CPpos
(see previously). Each raw corresponds to a segment, ordered by time.3) SegmentPostDist$edgesCoeff
A table containing the estimated coefficients for the incoming edges (regulatory interaction between parent and target
genes) for each temporal segment delimited by the CP given in SegmentPostDist$CPpos
(see previously). Each raw corresponds to a segment, ordered by time.
traceNetworks
) the network estimated with the ARTIVAsubnet
procedure.
ARTIVAsubnet
, ARTIVAnet
,
traceNetworks
, traceGeneProfiles
,
CP.postDist
, plotCP.postDist
.
# Load the ARTIVA R package
library(ARTIVA)
# Load the dataset with simulated gene expression profiles
data(simulatedProfiles)
# Name of the target gene to be analyzed with ARTIVA
targetGene = 1
# Names of the parent genes (typically transcription factors)
parentGenes = c("TF1", "TF2", "TF3", "TF4", "TF5")
# Note that the number of iterations in the RJ-MCMC sampling is reduced
# to 'niter=20000' in this example, but it should be increased (e.g. up to
# 50000) for a better estimation.
# Run the ARTIVAsubnet function
## Not run:
# ARTIVAtest = ARTIVAsubnet(targetData = simulatedProfiles[targetGene,],
# parentData = simulatedProfiles[parentGenes,],
# targetName = targetGene,
# parentNames = parentGenes,
# segMinLength = 2,
# edgesThreshold = 0.6,
# niter= 20000,
# savePictures=FALSE)
#
# # Re-compute a time-varying network from the output of function
# # ARTIVAsubnet with new analysis parameters
# analysis2 = ARTIVAsubnetAnalysis(ARTIVAsubnet=ARTIVAtest,
# segMinLength = 3,
# edgesThreshold = 0.5,
# outputPath="ARTIVAsubnet2",
# savePictures=FALSE)
#
# # Trace the obtained network.
# traceNetworks(analysis2$network, edgesThreshold = 0.3)
# ## End(Not run)
Run the code above in your browser using DataLab