# Load the ARTIVA R package
library(ARTIVA)
# Load the dataset with simulated gene expression profiles
data(simulatedProfiles)
# Name of the target gene to be analyzed with ARTIVA
targetGene = 1
# Names of the parent genes (typically transcription factors)
parentGenes = c("TF1", "TF2", "TF3", "TF4", "TF5")
# Run the ARTIVAsubnet function
# Note that the number of iterations in the RJ-MCMC sampling is reduced
# to 'niter=20000' in this example, but it should be increased (e.g. up to
# 50000) for a better estimation.
## Not run:
# ARTIVAtest = ARTIVAsubnet(targetData = simulatedProfiles[targetGene,],
# parentData = simulatedProfiles[parentGenes,],
# targetName = targetGene,
# parentNames = parentGenes,
# segMinLength = 2,
# edgesThreshold = 0.6,
# niter= 2000,
# savePictures=FALSE)
#
# # Print a summary of the obtained network
# geneNetworkSummary(ARTIVAtest$network, edgesThreshold = 0.3)
#
# # List of target genes to be analyzed independantly with ARTIVA
# targetGenes = c("TF3", 45, 50)
# ARTIVAtest2 = ARTIVAnet(targetData = simulatedProfiles[targetGenes,],
# parentData = simulatedProfiles[parentGenes,],
# targetName = targetGenes,
# parentNames = parentGenes,
# segMinLength = 2,
# edgesThreshold = 0.6,
# niter= 2000,
# savePictures=FALSE)
#
# # Print a summary of the obtained network
# geneNetworkSummary(ARTIVAtest2, edgesThreshold = 0.3)
#
# # Re-compute a time-varying network from the output of function
# # ARTIVAsubnet with new analysis parameters
# analysis2 = ARTIVAsubnetAnalysis(ARTIVAsubnet=ARTIVAtest,
# segMinLength = 3,
# edgesThreshold = 0.5,
# outputPath="ARTIVAsubnet2",
# savePictures=FALSE)
#
# # Print a summary of the network obtained with the 2nd analysis.
# geneNetworkSummary(analysis2$network, edgesThreshold = 0.3)
# ## End(Not run)
Run the code above in your browser using DataLab