
Last chance! 50% off unlimited learning
Sale ends in
ARTIVAsubnet
) for Auto Regressive TIme-VArying network inference.
plotCP.postDist(CPpostDist, targetName = NULL, onepage = TRUE,
color1 = "green", color2 = "black", estimatedCPpos=NULL)
CPpostDist$CPnumberPostDist
: A table containing the distribution for
the number of CPs approximated with ARTIVAsubnet
.
2)CPpostDist$CPpositionPostDist
: A table containing the
distribution for the position of the CPs approximated with function
ARTIVAsubnet
or CP.postDist
targetName=NULL
).
mfrow=TRUE
).
color1="green"
).
color2="black"
).
CP.postDist
(optional, default:
estimatedCPpos=NULL
, if estimatedCPpos=NULL
then the
number of highlighted CPs is the maximum of CPpostDist$CPnumberPostDist
and the positions are the top best of CPpostDist$CPpositionPostDist
).
ARTIVAnet
, ARTIVAsubnet
,
CP.postDist
, segmentModel.postDist
,
ARTIVAsubnetAnalysis
# Load the ARTIVA R package
library(ARTIVA)
# Load the dataset with simulated gene expression profiles
data(simulatedProfiles)
# Name of the target gene to be analyzed with ARTIVA
targetGene = 1
# Names of the parent genes (typically transcription factors)
parentGenes = c("TF1", "TF2", "TF3", "TF4", "TF5")
# run ARTIVAsubnet
# Note that the number of iterations in the RJ-MCMC sampling is reduced
# to 'niter=20000' in this example, but it should be increased (e.g. up to
# 50000) for a better estimation.
## Not run:
# ARTIVAtest = ARTIVAsubnet(targetData = simulatedProfiles[targetGene,],
# parentData = simulatedProfiles[parentGenes,],
# targetName = targetGene,
# parentNames = parentGenes,
# segMinLength = 2,
# edgesThreshold = 0.6,
# niter= 20000,
# savePictures=FALSE)
#
# # compute the PC posterior distribution with other parameters
# outCPpostDist = CP.postDist(ARTIVAtest$Samples$CP, burn_in=500,
# segMinLength=3)
#
# # plot the CP posterior distribution
# plotCP.postDist(outCPpostDist, targetName=paste("Target", targetGene),
# estimatedCPpos=outCPpostDist$estimatedCPpos)
#
# ## End(Not run)
Run the code above in your browser using DataLab