Learn R Programming

ASMbook (version 1.0.2)

simDat16: Simulate data for Chapter 16: Binomial ANCOVA

Description

Simulate Number black individuals ~ wetness regressions in adders in 3 regions

Usage

simDat16(nRegion = 3, nSite = 10, beta.vec = c(-4, 1, 2, 6, 2, -5))

Value

A list of simulated data and parameters.

nRegion

Number of regions

nSite

Number of sites per region

beta

Vector of regression coefficients

x

Indicator for region number

region

Region name (factor)

wetness

Wetness covariate

N

Number of adders captured at each site

C

Number of black adders captured at each site

Arguments

nRegion

Number of regions

nSite

Number of sites per region

beta.vec

Vector of regression coefficients

Author

Marc Kéry

Examples

Run this code
str(dat <- simDat16())      # Implicit default arguments

# Revert to main-effects model with parallel lines on the logit link scale
# (also larger sample size to better see patterns)
str(dat <- simDat16(nSite = 100, beta.vec = c(-4, 1, 2, 6, 0, 0)))

# Same with less strong logistic regression coefficient
str(dat <- simDat16(nSite = 100, beta.vec = c(-4, 1, 2, 3, 0, 0)))

# Revert to simple logit-linear binomial regression: no effect of pop (and weaker coefficient)
str(dat <- simDat16(nSite = 100, beta.vec = c(-4, 0, 0, 3, 0, 0)))

# Revert to one-way ANOVA binomial model: no effect of wetness
# (Choose greater differences in the intercepts to better show patterns)
str(dat <- simDat16(nSite = 100, beta.vec = c(-2, 2, 3, 0, 0, 0)))

# Revert to binomial "model-of-the-mean": no effects of either wetness or population
# Intercept chosen such that average proportion of black adders is 0.6
str(dat <- simDat16(nSite = 100, beta.vec = c(qlogis(0.6), 0, 0, 0, 0, 0)))
mean(dat$C / dat$N)        # Average is about 0.6

Run the code above in your browser using DataLab