# Generate simulated epidemic data
n_rows <- 7421
n_houses <- 1000
epidemic_new <- ssir(n_rows, T = 300, alpha = 0.298, inf_init = 32, rep = 3)
individual_data <- data.frame(
houseID = rep(1:n_houses, each = ceiling(n_rows / n_houses))[1:n_rows],
catchID = sample(1:10, n_rows, replace = TRUE),
schoolID = sample(1:10, n_rows, replace = TRUE),
num_people = round(rnorm(n_rows, mean = 4, sd = 1)),
num_elem_child = round(rnorm(n_rows, mean = 1, sd = 1)),
xStart = 0,
xEnd = 5,
yStart = 0,
yEnd = 5,
loc.x = rnorm(n_rows, mean = 2.5, sd = 1),
loc.y = rnorm(n_rows, mean = 2.5, sd = 1),
individualID = 1:n_rows,
elem_child_ind = sample(0:1, n_rows, replace = TRUE)
)
compiled_data <- compile_epi(epidemic_new, individual_data)
# Evaluate alarm metrics
alarm_metrics <- eval_metrics(compiled_data,
thres = seq(0.1, 0.3, by = 0.05))
# Access the results
summary(alarm_metrics$summary)
Run the code above in your browser using DataLab