n-dimensional vector of the reference propensity score
Q
bandwidth parameter that determines the maximum number of observations for pooling information (default: Q = 3)
studentize
TRUE if X is studentized elementwise and FALSE if not (default: TRUE)
alpha
(1-alpha) nominal coverage probability for the confidence interval of ATE (default: 0.05)
x_discrete
TRUE if the distribution of X is discrete and FALSE otherwise (default: FALSE)
n_hc
number of hierarchical clusters to discretize non-discrete covariates; relevant only if x_discrete is FALSE.
The default choice is n_hc = ceiling(length(Y)/10), so that there are 10 observations in each cluster on average.
Value
An S3 object of type "ATbounds". The object has the following elements.
call
a call in which all of the specified arguments are specified by their full names
type
ATT
cov_prob
Confidence level: 1-alpha
est_lb
estimate of the lower bound on ATT, i.e. E[Y(1) - Y(0) | D = 1]
est_ub
estimate of the upper bound on ATT, i.e. E[Y(1) - Y(0) | D = 1]
est_rps
the point estimate of ATT using the reference propensity score
se_lb
standard error for the estimate of the lower bound on ATT
se_ub
standard error for the estimate of the upper bound on ATT
ci_lb
the lower end point of the confidence interval for ATT
ci_ub
the upper end point of the confidence interval for ATT
References
Sokbae Lee and Martin Weidner. Bounding Treatment Effects by Pooling Limited Information across Observations.