
This function computes the sensitivity curve required for the auc
function and the plot
function.
sensitivity(predictions, labels, perc.rank = TRUE)
A numeric vector of classification probabilities (confidences, scores) of the positive event.
A factor of observed class labels (responses) with the only allowed values {0,1}.
A logical. If TRUE (default) the percentile rank of the predictions is used.
A list containing the following elements:
A numeric vector of threshold values
A numeric vector of sensitivity values corresponding to the threshold values
Ballings, M., Van den Poel, D., Threshold Independent Performance Measures for Probabilistic Classifcation Algorithms, Forthcoming.
sensitivity
, specificity
, accuracy
, roc
, auc
, plot
# NOT RUN {
data(churn)
sensitivity(churn$predictions,churn$labels)
# }
Run the code above in your browser using DataLab