Learn R Programming

AdIsMF (version 0.1.0)

FLM: Freundlich Linear Model

Description

This model will fit the adsorption data to the linear form of the Freundlich equation and will give the estimates of the Freundlich parameters, namely "kf" and "1/n" while evaluating the performance efficiency of the linear model of Freundlich through several error functions.

Usage

FLM (ce, qe)

Value

  • Freundlich Isotherm Linear Model: Model summary

  • correlation (ce, qe): Correlation between ce and qe

  • kf: Freundlich constant

  • 1/n: Freundlich exponent related to adsorption intensity

  • AIC: Akaike information criterion

  • AICc: Corrected Akaike information criterion

  • BIC: Bayesian information criterion

  • RMSE: Root Mean Squared Error

  • MSE: Mean Squared Error

  • MAE: Mean Absolute Error

  • MAPE: Mean Absolute Percentage Error

  • Chi.square: Chi-square value

Arguments

ce

Equilibrium concentration of the adsorbate in the solution

qe

Amount adsorbed

References

  • Giles, C. H. (1973). The history and use of the Freundlich adsorption isotherm. Journal of the Society of Dyers and Colourists, 89(8), 287-291.

  • Datta, S. P., Bhadoria, P. B. S., & Kar, S. (1998). Availability of extractable boron in some acid soils, West Bengal, India. Communications in soil science and plant analysis, 29(15-16), 2285-2306.

Examples

Run this code
ce <- c(0.025, 0.04, 0.055, 0.099, 0.139, 0.402, 1.999, 11.336)
qe <- c(17.21, 35.42, 51.238, 72.659, 89.268, 182.21, 345.29, 634.231)
m.fit <- FLM (ce, qe)

Run the code above in your browser using DataLab