#For full data typically used for AFT models (using imputeYn (2015) package)
dat<-data(n=100, p=10, r=0, b1=c(rep(5,5),rep(0,5)), sig=1, Cper=0)
#This needs to run for generating weights of the observations
l<-mrbj(cbind(dat$y, dat$delta) ~ dat$x, mcsize=100, trace=FALSE, gehanonly=FALSE)
#cv.AWEnetCC: Cross validation of Adaptive elastic net with censoring constraints
wt<-l$enet
cv1cc<-cv.AWEnetCC(dat$x, dat$y, dat$delta, weight=wt, kFold = 10, C=1.2, s=0.88,
lambda2=0.001, AEnetCC=TRUE)
#cv.AWEnetCC: Cross validation of weighted elastic net with censoring constraints
## Not run: l<-mrbj(cbind(dat$y, dat$delta) ~ dat$x, mcsize=100, trace=FALSE, gehanonly=TRUE)
## Not run: wt<-l$gehansd
## Not run: cv1cc<-cv.AWEnetCC(dat$x, dat$y, dat$delta, weight=wt, kFold = 10, C=1.2, s=0.88,
# lambda2=0.001, AEnetCC=F)## End(Not run)
Run the code above in your browser using DataLab