Learn R Programming

AdaptGauss (version 1.2.0)

ParetoDensityEstimation: Pareto Density Estimation

Description

This function estimates the Pareto Density for the distribution of one variable.

Usage

ParetoDensityEstimation(Data,paretoRadius,kernels,MinAnzKernels)

Arguments

Data
numeric vector of data.
paretoRadius
Optional, numeric value, see ParetoRadius
kernels
Optional, numeric vector. data values where pareto density is measured at. If 0 (by default) kernels will be computed.
MinAnzKernels
Optional, minimal number of kernels, default MinAnzKernels==100

Value

  • List with
  • kernelsnumeric vector. data values at with Pareto Density is measured.
  • paretoDensitynumeric vector containing the determined density by ParetoRadius.
  • paretoRadiusnumeric value.

Details

Pareto Density Estimation (PDE) is a method for the estimation of probability density functions using hyperspheres. The Pareto-radius of the hyperspheres is derived from the optimization of information for minimal set size. It is shown, that Pareto Density is the best estimate for clusters of Gaussian structure. The method is shown to be robust when cluster overlap and when the variances differ across clusters.

References

Ultsch, A.: Pareto density estimation: A density estimation for knowledge discover, in Baier, D.; Werrnecke, K. D., (Eds), Innovations in classification, data science, and information systems, Proc Gfkl 2003, pp 91-100, Springer, Berlin, 2005.

See Also

ParetoRadius

Examples

Run this code
data = c(rnorm(1000),rnorm(2000)+2,rnorm(1000)*2-1)
			# Optional, if not given ParetoDensityEstimation() 
			# calls ParetoRadius()
			pareto_radius<-ParetoRadius(data) 
			pdeVal        <- ParetoDensityEstimation(data,pareto_radius)
			plot(pdeVal$kernels,pdeVal$paretoDensity,type='l',xaxs='i',
			yaxs='i',xlab='Data',ylab='PDE')

Run the code above in your browser using DataLab