Learn R Programming

AffyExpress (version 1.38.0)

regress: Run regression to fit genewise linear model

Description

Fit genewise linear model using LIMMA package, ordinary linear regression, or permutation method.

Usage

regress(object, design, contrast, method, adj="none", permute.time=1000)

Arguments

object
an "ExpressionSet"
design
design matrix from the make.design function
contrast
contrast matrix from the make.contrast function
method
Three methods are supported by this function: "L" for using LIMMA method - compute moderated t-statistics and log-odds of differential expression by empirical Bayes shrinkage of the standard errors towards a common value, "F" for using ordinary linear regression, "P" for permuation test by resampling the phenotype
adj
adjustment method for multiple comparison test, including "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". The default value is "none". Type help(p.adjust) for more detail.
permute.time
number of permutation times, only used for the permutation method.

Value

A dataframe contains rows for all the genes from object and the following columns: ID(probeid); Log2Ratio (estimate of the effect or the contrast, on the log2 scale); F (F statistics); P.Value (raw p-value); adj.P.Value (adjusted p-value or q-value)

References

Smyth, G.K. (2005) Limma: linear models for microarray data. In: Bioinformatics and Computational Biology Solutions using R and Bioconductor, R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber (eds.), Springer, New York, pages 397-420

Examples

Run this code
data(testData)
normaldata<-pre.process("rma",testData)

## Create design matrix
design<-make.design(pData(normaldata), "group")

## Create contrast matrix - Compare group "A" vs. "C"
contrast<-make.contrast(design, "A", "C")

## Identify differentially expressed gene by using LIMMA method
result<-regress(normaldata, design, contrast, "L")

Run the code above in your browser using DataLab