rmaMicroRna(dd, normalize, background)readMicroRnaAFE TRUE the signal is normalized between arrays
using the 'quantile' methodTRUE the signal is background corrected
by fitting a normal + exponential convolution model to a vector of
observed intensitiesGautier, L., Cope, L., Bolstad, B. M., and Irizarry, R. A.(2004). affy---analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 3, 307-315.
Bolstad B. M. (). preprocessCore: A collection of pre-processing functions. R package version 1.4.0
Smyth, G. K. (2005). Limma: linear models for microarray data. In: 'Bioinformatics and Computational Biology Solutions using R and Bioconductor'. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber (eds), Springer, New York, pages 397 - 420
data(dd.micro)
ddTGS.rma=rmaMicroRna(dd.micro, normalize=TRUE, background=TRUE)
dim(ddTGS.rma)
RleMicroRna(ddTGS.rma$TGS,"RLE TGS.rma","blue")
Run the code above in your browser using DataLab