This function performs regression analysis using the Michaelis-Menten model.
MM(
trat,
resp,
npar = "mm2",
sample.curve = 1000,
error = "SE",
ylab = "Dependent",
xlab = "Independent",
theme = theme_classic(),
legend.position = "top",
point = "all",
width.bar = NA,
r2 = "all",
ic = FALSE,
fill.ic = "gray70",
alpha.ic = 0.5,
textsize = 12,
pointsize = 4.5,
linesize = 0.8,
linetype = 1,
pointshape = 21,
fillshape = "gray",
colorline = "black",
round = NA,
yname.formula = "y",
xname.formula = "x",
comment = NA,
fontfamily = "sans"
)
The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.
Numeric vector with dependent variable.
Numeric vector with independent variable.
Number of parameters (mm2 or mm3)
Provide the number of observations to simulate curvature (default is 1000)
Error bar (It can be SE - default, SD or FALSE)
Variable response name (Accepts the expression() function)
treatments name (Accepts the expression() function)
ggplot2 theme (default is theme_bw())
legend position (default is "top")
defines whether you want to plot all points ("all") or only the mean ("mean")
Bar width
coefficient of determination of the mean or all values (default is all)
Add interval of confidence
Color interval of confidence
confidence interval transparency level
Font size
shape size
line size
line type
format point (default is 21)
Fill shape
Color lines
round equation
Name of y in the equation
Name of x in the equation
Add text after equation
Font family
Gabriel Danilo Shimizu
The two-parameter Michaelis-Menten model is defined by: $$y = \frac{Vm \times x}{k + x}$$ The three-parameter Michaelis-Menten model is defined by: $$y = c + \frac{Vm \times x}{k + x}$$
Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).
data("granada")
attach(granada)
MM(time,WL)
MM(time,WL,npar="mm3")
Run the code above in your browser using DataLab