Learn R Programming

AllelicSeries (version 0.1.1.5)

ASBTSS: Allelic Series Burden Test from Summary Statistics

Description

Allelic series burden test from summary statistics.

Usage

ASBTSS(
  anno,
  beta,
  se,
  check = TRUE,
  eps = 1,
  lambda = 1,
  ld = NULL,
  method = "none",
  return_beta = FALSE,
  weights = c(1, 2, 3)
)

Value

If return_beta = TRUE, a list of including the effect size data.frame "betas" and the p-value "pval". If return_beta = FALSE, a numeric p-value.

Arguments

anno

(snps x 1) annotation vector with integer values in 1 through the number of annotation categories L.

beta

(snps x 1) vector of effect sizes for the coding genetic variants within a gene.

se

(snps x 1) vector of standard errors for the effect sizes.

check

Run input checks? Default: TRUE.

eps

Epsilon added to the diagonal of the LD matrix if not positive definite. Note, smaller values increase the chances of a false positive.

lambda

Optional genomic inflation factor. Defaults to 1, which results in no rescaling.

ld

(snps x snps) matrix of correlations among the genetic variants. Although ideally provided, an identity matrix is assumed if not.

method

Method for aggregating across categories: ("none", "sum"). Default: "none".

return_beta

Return the estimated effect size? Default: FALSE.

weights

(L x 1) vector of annotation category weights. Note that the number of annotation categories L is inferred from the length of weights.

Notes

  • The allelic series burden does not require the minor allele frequencies.

Examples

Run this code
# Generate data.
data <- DGP(n = 1e3)
sumstats <- CalcSumstats(data = data)

# Run allelic series burden test from sumstats.
results <- ASBTSS(
  anno = sumstats$sumstats$anno,
  beta = sumstats$sumstats$beta, 
  se = sumstats$sumstats$se,
  ld = sumstats$ld
)
show(results)

Run the code above in your browser using DataLab