This generates a configuration object for a Shifted Negative Binomial prior on the number of mixture components such that
$$q_M(m)=Pr(M=m) =\frac{\Gamma(r+m-1)}{(m-1)!\Gamma(r)} p^{m-1}(1-p)^r, \quad m=1,2,3,\ldots$$
The hyperparameters \(p\in (0,1)\) (probability of success) and \(r>0\) (size) can either be fixed using r
and p
or assigned appropriate prior distributions.
In the latter case, we assume \(p \sim Beta(a_P,b_P)\) and \(r \sim Gamma(a_R,b_R)\). In AntMAN we assume the following
parametrization of the Gamma density:
$$p(x\mid a,b )= \frac{b^a x^{a-1}}{\Gamma(a)} \exp\{ -bx \}, \quad x>0.$$
AM_mix_components_prior_negbin(
a_R = NULL,
b_R = NULL,
a_P = NULL,
b_P = NULL,
R = NULL,
P = NULL,
init_R = NULL,
init_P = NULL
)
The shape parameter \(a\) of the \(Gamma(a,b)\) prior distribution for \(r\).
The rate parameter \(b\) of the \(Gamma(a,b)\) prior distribution for \(r\).
The parameter \(a\) of the \(Beta(a,b)\) prior distribution for \(p\).
The parameter \(b\) of the \(Beta(a,b)\) prior distribution for \(p\).
It allows to fix \(r\) to a specific value.
It allows to fix \(p\) to a specific value.
The initial value of \(r\), when specifying a_R
and b_R
.
The inivial value of \(p\), when specifying a_P
and b_P
.
An AM_mix_components_prior
object. This is a configuration list to be used as mix_components_prior
argument for AM_mcmc_fit
.
If no arguments are provided, the default is \(r = 1 , a_P = 1, b_P = 1\).
Additionally, when init_R and init_P are not specified, there are default values: \(init_R = 1\) and \(init_P = 0.5\).
# NOT RUN {
AM_mix_components_prior_negbin (R=1, P=1)
AM_mix_components_prior_negbin ()
# }
Run the code above in your browser using DataLab