dataDef <- dataDemo
bust <- dataDef$bust
interv <- c("74-78","78-82","82-86","86-90","90-94","94-98","98-102",
"102-107","107-113","113-119","119-125","125-131")
bustCirc_4 <- seq(74,102,4)
bustCirc_6 <- seq(107,131,6)
bustCirc <- c(bustCirc_4,bustCirc_6)
nsizes <- length(bustCirc)
maxsplit <- 5 ; orness <- 0.7 ; alpha <- 0.01 ; type <- "IMO" #type <- "MO" for $HIPAM_{MO}$
ahVect <- c(23, 28, 20, 25, 25)
hip <- list()
for(i in 1 : (nsizes - 1)){
data = dataDef[(bust >= bustCirc[i]) & (bust < bustCirc[i + 1]), ]
d <- as.matrix(data)
hip[[i]] <- hipamAnthropom(d,maxsplit=maxsplit,orness=orness,type=type,ahVect=ahVect)
}
str(hip)
#Dendogram for the first bust class:
plotTreeHipam(hip[[1]],title=paste("Proposed Hierarchical PAM Clustering \n",interv[1]))
Run the code above in your browser using DataLab