Learn R Programming

Anthropometry (version 1.2)

LloydShapes: Lloyd k-means for 3D shapes

Description

The basic foundation of k-means is that the sample mean is the value that minimizes the Euclidean distance from each point, to the centroid of the cluster to which it belongs. Two fundamental concepts of the statistical shape analysis are the Procrustes mean and the Procrustes distance. Therefore, by integrating the Procrustes mean and the Procrustes distance we can use k-means in the shape analysis context.

The k-means method has been proposed by several scientists in different forms. In computer science and pattern recognition the k-means algorithm is often termed the Lloyd algorithm (see Lloyd (1982)).

This function allows us to use the Lloyd version of k-means adapted to deal with 3D shapes. Note that in the generic name of the k-means algorithm, k refers to the number of clusters to search for. To be more specific in the R code, k is referred to as numClust, see next section arguments.

Usage

LloydShapes(array3D,numClust,algSteps=10,niter=10,stopCr=0.0001,simul,verbose)

Arguments

array3D
Array with the 3D landmarks of the sample objects. Each row corresponds to an observation, and each column corresponds to a dimension (x,y,z).
numClust
Number of clusters.
algSteps
Number of steps of the algorithm per initialization. Default value is 10.
niter
Number of random initializations (iterations). Default value is 10.
stopCr
Relative stopping criteria. Default value is 0.0001.
simul
Logical value. If TRUE, this function is used for a simulation study.
verbose
A logical specifying whether to provide descriptive output about the running process.

Value

  • A list with the following elements:

    asig: Optimal clustering.

    copt: Optimal centers.

    vopt: Optimal objective function.

    initials: Random initial values used in each iteration. These values are then used by HartiganShapes.

    If a simulation study is carried out, the following elements are returned:

    asig: Optimal clustering.

    copt: Optimal centers.

    vopt: Optimal objective function.

    compTime: Computational time.

    AllRate: Allocation rate.

    initials: Random initial values used in each iteration. These values are then used by HartiganShapes.

Details

There have been several attempts to adapt the k-means algorithm in the context of the statistical shape analysis, each one adapting a different version of the k-means algorithm (Amaral et al. (2010), Georgescu (2009)). In Vinue et al. (2014), it is demonstrated that the Lloyd k-means represents a noticeable reduction in the computation involved when the sample size increases, compared with the Hartigan-Wong k-means. We state that Hartigan-Wong should be used in the shape analysis context only for very small samples.

References

Vinue, G., Simo, A., and Alemany, S., (2014). The k-means algorithm for 3D shapes with an application to apparel design, Advances in Data Analysis and Classification, 1--30.

Lloyd, S. P., (1982). Least Squares Quantization in PCM, IEEE Transactions on Information Theory 28, 129--137.

Dryden, I. L., and Mardia, K. V., (1998). Statistical Shape Analysis, Wiley, Chichester.

See Also

HartiganShapes, trimmedLloydShapes, landmarksSampleSpaSurv, cube8landm, parallelep8landm, cube34landm, parallelep34landm, procGPA, optraShapes, qtranShapes

Examples

Run this code
#CLUSTERING INDIVIDUALS ACCORDING TO THEIR SHAPE:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
dim(landmarksNoNa) 
#[1] 574 198 
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
#[1] 66
#In the interests of simplicity of the computation involved:
landmarksNoNa_First50 <- landmarksNoNa[1 : 50, ] 
(numIndiv <- dim(landmarksNoNa_First50)[1])
#[1] 50         
    
array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First50)
shapes::plotshapes(array3D[,,1]) 
calibrate::textxy(array3D[,1,1],array3D[,2,1],labs=1:numLandmarks,cex=0.7) 

numClust <- 3 ; algSteps <- 5 ; niter <- 5 ; stopCr <- 0.0001
resLL <- LloydShapes(array3D,numClust,algSteps,niter,stopCr,FALSE,TRUE)
asig <- resLL$asig 
table(resLL$asig) 


#SIMULATION STUDY:
#Definition of the cluster of cubes:
Ms_cube <- cube8landm
#Ms_cube <- cube34landm #for the case of 34 landmarks.
colMeans(Ms_cube)
dim(Ms_cube) 
shapes::plotshapes(Ms_cube[,,1])

#Number of landmarks and variables:
k_cube <- dim(Ms_cube)[1]
vars_cube <- k_cube * dim(Ms_cube)[2] 

#Covariance matrix (0.01, 9, 36):
sigma_cube <- 0.01
Sigma_cube <- diag(sigma_cube,vars_cube)

#Sample size of each cluster (25, 250, 450):
n_cube <- 25

#Cluster of cubes:
simu1_cube <- mvtnorm::rmvt(n_cube,Sigma_cube,df=99)[,c(1 : k_cube * dim(Ms_cube)[2] 
        - 2, 1 : k_cube * dim(Ms_cube)[2] - 1, 1 : k_cube * dim(Ms_cube)[2])]
Simu1_cube <- as.vector(Ms_cube) + t(simu1_cube) 
dim(Simu1_cube) 

#Labels vector to identify the elements in the cluster of cubes:
etiqs_cl1 <- paste("cube_", 1:n_cube, sep = "")

#First cluster:
cl1 <- array(Simu1_cube, dim = c(k_cube, dim(Ms_cube)[2], n_cube), 
             dimnames = list(NULL, NULL, etiqs_cl1))
colMeans(cl1) 
dim(cl1) 

#Definition of the cluster of parallelepipeds:
Ms_paral <- parallelep8landm
#Ms_paral <- parallelep34landm #for the case of 34 landmarks.
colMeans(Ms_paral)
dim(Ms_paral) 

#Number of landmarks and variables:
k_paral <- dim(Ms_paral)[1] 
vars_paral <- k_paral * dim(Ms_paral)[2] 

#Covariance matrix (0.01, 9, 36):
sigma_paral <- 0.01
Sigma_paral <- diag(sigma_paral,vars_paral)

#Sample size of each cluster (25, 250, 450):
n_paral <- 25

#Cluster of parallelepipeds:
simu1_paral <- mvtnorm::rmvt(n_paral, Sigma_paral, df = 99)[,c(1 : k_paral * 
           dim(Ms_paral)[2] - 2, 1 : k_paral * dim(Ms_paral)[2] - 1, 
           1 : k_paral * dim(Ms_paral)[2])]
Simu1_paral <- as.vector(Ms_paral) + t(simu1_paral) 
dim(Simu1_paral) 

#Labels vector to identify the elements in the cluster of parallelepipeds:
etiqs_cl2 <- paste("Parallelepiped_", 1:n_paral, sep = "")

#Second cluster:
cl2 <- array(Simu1_paral, dim = c(k_paral, dim(Ms_paral)[2], n_paral), 
             dimnames = list(NULL, NULL, etiqs_cl2))
colMeans(cl2) 
dim(cl2) 

#Combine both clusters: 
array3D <- abind::abind(cl1,cl2)
str(array3D)
shapes3dShapes(array3D[,,1], loop=0, type="p", color=2, joinline=c(1:1),
            axes3=TRUE, rglopen=TRUE, main="First figure")

numClust <- 2 ; algSteps <- 5 ; niter <- 5 ; stopCr <- 0.0001
resLLSim <- LloydShapes(array3D,numClust,algSteps,niter,stopCr,TRUE,TRUE)

Run the code above in your browser using DataLab