dataHipam <- sampleSpanishSurvey
bust <- dataHipam$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))
interv <- c("74-78","78-82","82-86","86-90","90-94","94-98","98-102",
"102-107","107-113","113-119","119-125","125-131")
maxsplit <- 5 ; orness <- 0.7 ; alpha <- 0.01 ; type <- "IMO" #type <- "MO" for $HIPAM_{MO}$
ah <- c(23, 28, 20, 25, 25)
set.seed(2013)
res_hipam <- list()
for(i in 1 : (bustSizes$nsizes - 1)){
data = dataHipam[(bust >= bustSizes$bustCirc[i]) & (bust < bustSizes$bustCirc[i + 1]), ]
dataMat <- as.matrix(data)
res_hipam[[i]] <- hipamAnthropom(dataMat, maxsplit = maxsplit, orness = orness, type = type,
ah = ah, verbose = FALSE)
}
str(res_hipam)
#Dendogram for the first bust class:
plotTreeHipamAnthropom(res_hipam[[1]],
main=paste("Proposed Hierarchical PAM Clustering \n",
interv[1]))
Run the code above in your browser using DataLab