In this version of HIPAM, called $HIPAM_IMO$, there are three different stopping criteria: First, if $|P| leq 2$, then P is a terminal node. If not, the second stopping refers to the INCA (Index Number Clusters Atypical) criterion (Irigoien et al. (2008)): if $INCA_k leq 0.2$ for all k, then P is a terminal node. Finally, the third stopping criteria uses the Mean Split Silhouette. See Vinue et al. (2013) for more details.
The foundation and performance of the HIPAM algorithm is explained in hipamAnthropom
.
checkBranchLocalIMO(tree,data,i,maxsplit,asw.tol,local.const,orness,type,ah, verbose,...)
weightsMixtureUB
and getDistMatrix
.
ah
slopes of the distance function in getDistMatrix
. Given the five variables considered, this vector is c(23,28,20,25,25). This vector would be different according to the variables considered.
Wit, E., and McClure, J., (2004). Statistics for Microarrays: Design, Analysis and Inference. John Wiley & Sons, Ltd.
Wit, E., and McClure, J., (2006). Statistics for Microarrays: Inference, Design and Analysis. R package version 0.1. http://www.math.rug.nl/~ernst/book/smida.html.
Pollard, K. S., and van der Laan, M. J., (2002). A method to identify significant clusters in gene expression data. Vol. II of SCI2002 Proceedings, 318--325.
Irigoien, I., and Arenas, C., (2008). INCA: New statistic for estimating the number of clusters and identifying atypical units, Statistics in Medicine 27, 2948--2973.
Irigoien, I., Sierra, B., and Arenas, C., (2012). ICGE: an R package for detecting relevant clusters and atypical units in gene expression, BMC Bioinformatics 13 1--29.
hipamAnthropom