Learn R Programming

ArDec (version 2.1-1)

ardec: Time series autoregressive decomposition

Description

Decomposition of a time series into latent subseries from a fitted autoregressive model

Usage

ardec(x, coef, ...)

Arguments

x

time series

coef

autoregressive parameters of AR(p) model

additional arguments for specific methods

Value

A list with components:

period

periods of latent components

modulus

damping factors of latent components

comps

matrix of latent components

Details

If an observed time series can be adequately described by an (eventually high order) autoregressive AR(p) process, a constructive result (West, 1997) yields a time series decomposition in terms of latent components following either AR(1) or AR(2) processes depending on the eigenvalues of the state evolution matrix.

Complex eigenvalues r exp(iw) correspond to pseudo-periodic oscillations as a damped sine wave with fixed period (2pi/w) and damping factor r. Real eigenvalues correspond to a first order autoregressive process with parameter r.

References

West, M. (1997), Time series decomposition. Biometrika, 84, 489-494.

West, M. and Harrisson, P.J. (1997), Bayesian Forecasting and Dynamic Models, Springer-Verlag.

Examples

Run this code
# NOT RUN {
data(tempEng)
coef=ardec.lm(tempEng)$coefficients

# warning: running the next command can be time comsuming!

decomposition=ardec(tempEng,coef)

 
# }

Run the code above in your browser using DataLab