library(MASS)
n = 800
p_x = 10 # dimension of parameters
p_z = 10
p = p_x + p_z
gamma_X = c(rep(1,2),rep(0,p_x-2))
gamma_Z = c(rep(1,2),rep(0,p_z-2))
gamma = c(gamma_X, gamma_Z)
mu_X = rep(0,p_x)
mu_Z = rep(0,p_z)
Sigma_X = diag(1,p_x,p_x)
Sigma_Z = diag(1,p_z,p_z)
Sigma_e = diag(0.2,p_x)
X = mvrnorm(n, mu_X, Sigma_X, tol = 1e-6, empirical = FALSE, EISPACK = FALSE)
Z = mvrnorm(n, mu_Z, Sigma_Z, tol = 1e-6, empirical = FALSE, EISPACK = FALSE)
data = DG(X,Z,gamma_X,gamma_Z,Sigma_e,outcome="continuous")
y = as.vector(SIMEX_EST(data,PS="logistic",Psi = seq(0,2,length=10),p_x=length(gamma_X),K=5,
Sigma_e=diag(0.2,p_x)))
V = diag(1,length(y),length(y))
est_lasso_cv = VSE_PS(V,y,method="lasso",cv="TRUE")
EST_ATE(data, Psi = seq(0,2,length=10),p_x=length(gamma_X),K=5, gamma=est_lasso_cv,
Sigma_e=diag(0.2,p_x),bootstrap = 10)
est_scad_cv = VSE_PS(V,y,method="scad",cv="TRUE")
EST_ATE(data, Psi = seq(0,2,length=10),p_x=length(gamma_X),K=5, gamma=est_scad_cv,
Sigma_e=diag(0.2,p_x),bootstrap = 10)
est_mcp_cv = VSE_PS(V,y,method="mcp",cv="TRUE")
EST_ATE(data, Psi = seq(0,2,length=10),p_x=length(gamma_X),K=5, gamma=est_mcp_cv,
Sigma_e=diag(0.2,p_x),bootstrap = 10)
Run the code above in your browser using DataLab