AutoScore_rank_Ordinal: AutoScore STEP (i) for ordinal outcomes: Generate variable ranking
list by machine learning (AutoScore Module 1)
Description
AutoScore STEP (i) for ordinal outcomes: Generate variable ranking
list by machine learning (AutoScore Module 1)
Usage
AutoScore_rank_Ordinal(train_set, ntree = 100)
Value
Returns a vector containing the list of variables and its ranking generated by machine learning (random forest)
Arguments
train_set
A processed data.frame that contains data to be analyzed, for training.
ntree
Number of trees in the random forest (Default: 100).
Details
The first step in the AutoScore framework is variable ranking. We
use random forest (RF) for multiclass classification to identify the
top-ranking predictors for subsequent score generation. This step
corresponds to Module 1 in the AutoScore-Ordinal paper.
References
Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32
Saffari SE, Ning Y, Feng X, Chakraborty B, Volovici V, Vaughan R, Ong
ME, Liu N, AutoScore-Ordinal: An interpretable machine learning framework for
generating scoring models for ordinal outcomes, arXiv:2202.08407
if (FALSE) {
# see AutoScore-Ordinal Guidebook for the whole 5-step workflowdata("sample_data_ordinal") # Output is named `label`ranking <- AutoScore_rank_ordinal(sample_data_ordinal, ntree = 50)
}