AutoScore STEP(v) for ordinal outcomes: Evaluate the final score (AutoScore Module 6)
AutoScore_testing_Ordinal(
test_set,
final_variables,
link = "logit",
cut_vec,
scoring_table,
with_label = TRUE,
n_boot = 100
)A data frame with predicted score and the outcome for downstream visualization.
A processed data.frame that contains data for testing purpose. This data.frame should have same format as train_set (same variable names and outcomes)
A vector containing the list of selected variables,
selected from Step(ii) AutoScore_parsimony_Ordinal.
The link function used to model ordinal outcomes. Default is
"logit" for proportional odds model. Other options are
"cloglog" (proportional hazards model) and "probit".
Generated from STEP(iii) AutoScore_weighting_Ordinal.
The final scoring table after fine-tuning, generated
from STEP(iv) AutoScore_fine_tuning_Ordinal.Please follow the
guidebook
Set to TRUE if there are labels in the test_set and performance will be evaluated accordingly (Default:TRUE).
Number of bootstrap cycles to compute 95% CI for performance metrics.
Saffari SE, Ning Y, Feng X, Chakraborty B, Volovici V, Vaughan R, Ong ME, Liu N, AutoScore-Ordinal: An interpretable machine learning framework for generating scoring models for ordinal outcomes, arXiv:2202.08407
AutoScore_rank_Ordinal,
AutoScore_parsimony_Ordinal,
AutoScore_weighting_Ordinal,
AutoScore_fine_tuning_Ordinal.
## Please see the guidebook or vignettes
Run the code above in your browser using DataLab