AutoScore STEP(v) for survival outcomes: Evaluate the final score with ROC analysis (AutoScore Module 6)
AutoScore_testing_Survival(
test_set,
final_variables,
cut_vec,
scoring_table,
threshold = "best",
with_label = TRUE,
time_point = c(1, 3, 7, 14, 30, 60, 90)
)A data frame with predicted score and the outcome for downstream visualization.
A processed data.frame that contains data for testing purpose. This data.frame should have same format as
train_set (same variable names and outcomes)
A vector containing the list of selected variables, selected from Step(ii) AutoScore_parsimony. Run vignette("Guide_book", package = "AutoScore") to see the guidebook or vignette.
Generated from STEP(iii)
AutoScore_weighting_Survival().Please follow the guidebook
The final scoring table after fine-tuning, generated from STEP(iv) AutoScore_fine_tuning.Please follow the guidebook
Score threshold for the ROC analysis to generate sensitivity, specificity, etc. If set to "best", the optimal threshold will be calculated (Default:"best").
Set to TRUE if there are labels(`label_time` and `label_status`) in the test_set and performance will be evaluated accordingly (Default:TRUE).
The time points to be evaluated using time-dependent AUC(t).
Xie F, Ning Y, Yuan H, et al. AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data. J Biomed Inform. 2022;125:103959. doi:10.1016/j.jbi.2021.103959
AutoScore_rank_Survival,
AutoScore_parsimony_Survival,
AutoScore_weighting_Survival,
AutoScore_fine_tuning_Survival.
## Please see the guidebook or vignettes
Run the code above in your browser using DataLab