Compute mean AUC based on validation set for plotting parsimony
compute_auc_val_ord(
train_set_1,
validation_set_1,
variable_list,
link,
categorize,
quantiles,
max_cluster,
max_score
)A list of mAUC for parsimony plot
Processed training set
Processed validation set
List of included variables
The link function used to model ordinal outcomes. Default is
"logit" for proportional odds model. Other options are
"cloglog" (proportional hazards model) and "probit".
Methods for categorize continuous variables. Options include "quantile" or "kmeans"
Predefined quantiles to convert continuous variables to categorical ones. Available if categorize = "quantile".
The max number of cluster (Default: 5). Available if categorize = "kmeans".
Maximum total score