Learn R Programming

AzureML (version 0.2.10)

deleteWebService: Delete a Microsoft Azure Web Service

Description

Delete a Microsoft Azure Machine Learning web service from your workspace.

Usage

deleteWebService(ws, name, refresh = TRUE)

Arguments

ws
An AzureML workspace reference returned by workspace.
name
Either one row from the workspace services data.frame corresponding to a service to delete, or simply a service name character string.
refresh
Set to FALSE to supress automatic updating of the workspace list of services, useful when deleting many services in bulk.

Value

The updated data.frame of workspace services is invisibly returned.

See Also

services publishWebService updateWebService

Other publishing functions: publishWebService, updateWebService; workspace

Examples

Run this code
## Not run: 
# # Use a default configuration in ~/.azureml, alternatively
# # see help for `?workspace`.
# 
# ws <- workspace()
#   
# # Publish a simple model using the lme4::sleepdata ---------------------------
# 
# library(lme4)
# set.seed(1)
# train <- sleepstudy[sample(nrow(sleepstudy), 120),]
# m <- lm(Reaction ~ Days + Subject, data = train)
# 
# # Deine a prediction function to publish based on the model:
# sleepyPredict <- function(newdata){
#   predict(m, newdata=newdata)
# }
# 
# ep <- publishWebService(ws, fun = sleepyPredict, name="sleepy lm",
#                         inputSchema = sleepstudy,
#                         data.frame=TRUE)
# 
# # OK, try this out, and compare with raw data
# ans <- consume(ep, sleepstudy)$ans
# plot(ans, sleepstudy$Reaction)
# 
# # Remove the service
# deleteWebService(ws, "sleepy lm")
# 
# 
# 
# # Another data frame example -------------------------------------------------
# 
# # If your function can consume a whole data frame at once, you can also
# # supply data in that form, resulting in more efficient computation.
# # The following example builds a simple linear model on a subset of the
# # airquality data and publishes a prediction function based on the model.
# set.seed(1)
# m <- lm(Ozone ~ ., data=airquality[sample(nrow(airquality), 100),])
# # Define a prediction function based on the model:
# fun <- function(newdata)
# {
#   predict(m, newdata=newdata)
# }
# # Note the definition of inputSchema and use of the data.frame argument.
# ep <- publishWebService(ws, fun=fun, name="Ozone",
#                         inputSchema = airquality,
#                         data.frame=TRUE)
# ans <- consume(ep, airquality)$ans
# plot(ans, airquality$Ozone)
# deleteWebService(ws, "Ozone")
# 
# 
# 
# # Train a model using diamonds in ggplot2 ------------------------------------
# # This example also demonstrates how to deal with factor in the data
# 
# data(diamonds, package="ggplot2")
# set.seed(1)
# train_idx = sample.int(nrow(diamonds), 30000)
# test_idx = sample(setdiff(seq(1, nrow(diamonds)), train_idx), 500)
# train <- diamonds[train_idx, ]
# test  <- diamonds[test_idx, ]
# 
# model <- glm(price ~ carat + clarity + color + cut - 1, data = train, 
#              family = Gamma(link = "log"))
# 
# diamondLevels <- diamonds[1, ]
# 
# # The model works reasonably well, except for some outliers
# plot(exp(predict(model, test)) ~ test$price)
# 
# # Create a prediction function that converts characters correctly to factors
# 
# predictDiamonds <- function(x){
#   x$cut     <- factor(x$cut,     
#                       levels = levels(diamondLevels$cut), ordered = TRUE)
#   x$clarity <- factor(x$clarity, 
#                       levels = levels(diamondLevels$clarity), ordered = TRUE)
#   x$color   <- factor(x$color,   
#                       levels = levels(diamondLevels$color), ordered = TRUE)
#   exp(predict(model, newdata = x))
# }
# 
# 
# # Publish the service
# 
# ws <- workspace()
# ep <- publishWebService(ws, fun = predictDiamonds, name = "diamonds",
#                         inputSchema = test,
#                         data.frame = TRUE
# )
# 
# # Consume the service
# results <- consume(ep, test)$ans
# plot(results ~ test$price)
# 
# deleteWebService(ws, "diamonds")
# 
# 
# 
# # Simple example using scalar input ------------------------------------------
# 
# ws <- workspace()
# 
# # Really simple example:
# add <- function(x,y) x + y
# endpoint <- publishWebService(ws, 
#                               fun = add, 
#                               name = "addme", 
#                               inputSchema = list(x="numeric", 
#                                                  y="numeric"), 
#                               outputSchema = list(ans="numeric"))
# consume(endpoint, list(x=pi, y=2))
# 
# # Now remove the web service named "addme" that we just published
# deleteWebService(ws, "addme")
# 
# 
# 
# # Send a custom R function for evaluation in AzureML -------------------------
# 
# # A neat trick to evaluate any expression in the Azure ML virtual
# # machine R session and view its output:
# ep <- publishWebService(ws, 
#                         fun =  function(expr) {
#                           paste(capture.output(
#                             eval(parse(text=expr))), collapse="\n")
#                         },
#                         name="commander", 
#                         inputSchema = list(x = "character"),
#                         outputSchema = list(ans = "character"))
# cat(consume(ep, list(x = "getwd()"))$ans)
# cat(consume(ep, list(x = ".packages(all=TRUE)"))$ans)
# cat(consume(ep, list(x = "R.Version()"))$ans)
# 
# # Remove the service we just published
# deleteWebService(ws, "commander")
# 
# 
# 
# # Understanding the scoping rules --------------------------------------------
# 
# # The following example illustrates scoping rules. Note that the function
# # refers to the variable y defined outside the function body. That value
# # will be exported with the service.
# y <- pi
# ep <- publishWebService(ws, 
#                         fun = function(x) x + y, 
#                         name = "lexical scope",
#                         inputSchema = list(x = "numeric"), 
#                         outputSchema = list(ans = "numeric"))
# cat(consume(ep, list(x=2))$ans)
# 
# # Remove the service we just published
# deleteWebService(ws, "lexical scope")
# 
# 
# # Demonstrate scalar inputs but sending a data frame for scoring -------------
# 
# # Example showing the use of consume to score all the rows of a data frame
# # at once, and other invocations for evaluating multiple sets of input
# # values. The columns of the data frame correspond to the input parameters
# # of the web service in this example:
# f <- function(a,b,c,d) list(sum = a+b+c+d, prod = a*b*c*d)
# ep <-  publishWebService(ws, 
#                          f, 
#                          name = "rowSums",
#                          inputSchema = list(
#                            a = "numeric", 
#                            b = "numeric", 
#                            c = "numeric", 
#                            d = "numeric"
#                          ),
#                          outputSchema = list(
#                            sum ="numeric", 
#                            prod = "numeric")
# )
# x <- head(iris[,1:4])  # First four columns of iris
# 
# # Note the following will FAIL because of a name mismatch in the arguments
# # (with an informative error):
# consume(ep, x, retryDelay=1)
# # We need the columns of the data frame to match the inputSchema:
# names(x) <- letters[1:4]
# # Now we can evaluate all the rows of the data frame in one call:
# consume(ep, x)
# # output should look like:
# #    sum    prod
# # 1 10.2   4.998
# # 2  9.5   4.116
# # 3  9.4  3.9104
# # 4  9.4   4.278
# # 5 10.2    5.04
# # 6 11.4 14.3208
# 
# # You can use consume to evaluate just a single set of input values with this
# # form:
# consume(ep, a=1, b=2, c=3, d=4)
# 
# # or, equivalently,
# consume(ep, list(a=1, b=2, c=3, d=4))
# 
# # You can evaluate multiple sets of input values with a data frame input:
# consume(ep, data.frame(a=1:2, b=3:4, c=5:6, d=7:8))
# 
# # or, equivalently, with multiple lists:
# consume(ep, list(a=1, b=3, c=5, d=7), list(a=2, b=4, c=6, d=8))
# 
# # Remove the service we just published
# deleteWebService(ws, "rowSums")
# 
# # A more efficient way to do the same thing using data frame input/output:
# f <- function(df) with(df, list(sum = a+b+c+d, prod = a*b*c*d))
# ep = publishWebService(ws, f, name="rowSums2", 
#                        inputSchema = data.frame(a = 0, b = 0, c = 0, d = 0))
# consume(ep, data.frame(a=1:2, b=3:4, c=5:6, d=7:8))
# deleteWebService(ws, "rowSums2")
# 
# 
# 
# # Automatically discover dependencies ----------------------------------------
# 
# # The publishWebService function uses `miniCRAN` to include dependencies on
# # packages required by your function. The next example uses the `lmer`
# # function from the lme4 package, and also shows how to publish a function
# # that consumes a data frame by setting data.frame=TRUE.  Note! This example
# # depends on a lot of packages and may take some time to upload to Azure.
# library(lme4)
# # Build a sample mixed effects model on just a subset of the sleepstudy data...
# set.seed(1)
# m <- lmer(Reaction ~ Days + (Days | Subject), 
#           data=sleepstudy[sample(nrow(sleepstudy), 120),])
# # Deine a prediction function to publish based on the model:
# fun <- function(newdata)
# {
#   predict(m, newdata=newdata)
# }
# ep <- publishWebService(ws, fun=fun, name="sleepy lmer",
#                         inputSchema= sleepstudy,
#                         packages="lme4",
#                         data.frame=TRUE)
# 
# # OK, try this out, and compare with raw data
# ans = consume(ep, sleepstudy)$ans
# plot(ans, sleepstudy$Reaction)
# 
# # Remove the service
# deleteWebService(ws, "sleepy lmer")
# ## End(Not run)

Run the code above in your browser using DataLab