##################
#Dependent Model#
################
#Data 1: 100 simulated concentrations during the times
#between 0 and 4, using the parameters Beta = 5, Q = 13.8,
#G = 351.5, VN = pi*10^-3, VF = 3.8, Tau_N = 1,
#Tau_NF = 0.5 and Tau_F = 0.64.
## Not run:
# data(ex1)
#
# #######
# #BCLT#
# #####
#
# r <- B2ZM(data = ex1, priorBeta = "unif(0,10)",
# priorQ="unif(11,17)", priorG = "unif(281,482)", S = diag(10,2),
# v = 4, VN = pi*10^-3, VF = 3.8, sampler = "BCLT",
# bclt.control=list( m = 7000, sample_size=2000))
#
#
# summary(r)
# plot(r)
#
#
# #########################
# #METROPOLIS WITHIN GIBBS#
# #########################
#
# r <- B2ZM(data = ex1, priorBeta = "unif(0,10)",
# priorQ="unif(11,17)", priorG = "unif(281,482)", S = diag(10,2),
# v = 4, VN = pi*10^-3, VF = 3.8, sampler = "MCMC",
# mcmc.control = list(NUpd = 10000, burnin = 1000,
# lag = 1, m = 5000) )
#
# summary(r)
# plot(r)
#
#
# #######
# #IMIS#
# #####
#
# r <- B2ZM(data = ex1, priorBeta = "unif(0,10)",
# priorQ="unif(11,17)", priorG = "unif(281,482)", S = diag(10,2),
# v = 4, VN = pi*10^-3, VF = 3.8, sampler="IMIS",
# imis.control = list( N0 = 6000, B = 600, M = 3000, it.max = 12))
#
# summary(r)
# plot(r)
#
#
# ######
# #SIR#
# ####
#
# r <- B2ZM(data = ex1, priorBeta = "unif(0,10)",
# priorQ="unif(11,17)", priorG = "unif(281,482)", S = diag(10,2),
# v = 4, VN = pi*10^-3, VF = 3.8, sampler="SIR",
# sir.control = list(m = 10000) )
#
# plot(r)
# summary(r)
#
# #######################################################################
#
# #####################
# #Independent Model #
# ###################
#
# #Data 2: 100 simulated concentrations during the times
# #between 0 and 4, using the parameters Beta = 5, Q = 13.8,
# #G = 351.5, VN = pi*10^-3, VF = 3.8, Tau_N = 1,
# #Tau_NF = 0 and Tau_F = 0.64.
#
# data(ex2)
#
# #######
# #BCLT#
# #####
#
# r <- B2ZM(data = ex2, priorBeta = "unif(0,10)",
# priorQ="unif(11,17)", priorG = "unif(281,482)",
# tauN.sh = 5 , tauN.sc = 4 , tauF.sh = 5, tauF.sc = 7,
# VN = pi*10^-3, VF = 3.8, sampler = "BCLT",
# indep.model = TRUE, bclt.control=list(m = 7000,
# sample_size=2000))
#
# summary(r)
# plot(r)
#
#
# #########################
# #METROPOLIS WITHIN GIBBS#
# #########################
#
# r <- B2ZM(data = ex2, indep.model = TRUE,
# priorBeta = "unif(0,10)", priorQ="unif(11,17)",
# priorG = "unif(281,482)", tauN.sh = 5 , tauN.sc = 4 , tauF.sh = 5,
# tauF.sc = 7 , VN = pi*10^-3, VF = 3.8, sampler = "MCMC",
# mcmc.control = list(NUpd = 10000, burnin = 1000, lag = 1,
# m = 10000))
#
# summary(r)
# plot(r)
#
#
# #######
# #IMIS#
# #####
#
# r <- B2ZM(data = ex2, indep.model = TRUE,
# priorBeta = "unif(0,10)", priorQ="unif(11,17)",
# priorG = "unif(281,482)", tauN.sh = 5 , tauN.sc = 4 , tauF.sh = 5,
# tauF.sc = 7 , VN = pi*10^-3, VF = 3.8, sampler = "IMIS",
# imis.control = list(N0 = 5000, B = 500, M = 3000, it.max = 12))
#
# summary(r)
# plot(r)
#
#
# ######
# #SIR#
# ####
#
# r <- B2ZM(data = ex2, indep.model = TRUE,
# priorBeta = "unif(0,10)", priorQ="unif(11,17)",
# priorG = "unif(281,482)", tauN.sh = 5 , tauN.sc = 4 , tauF.sh = 5,
# tauF.sc = 7 , VN = pi*10^-3, VF = 3.8, sampler = "SIR",
# sir.control = list(m = 10000))
#
# plot(r)
# summary(r)
# ## End(Not run)
Run the code above in your browser using DataLab