##################
#Dependent Model#
################
#Data 1: 100 simulated concentrations during the times
#between 0 and 4, using the parameters Beta = 5, Q = 13.8,
#G = 351.5, VN = pi*10^-3, VF = 3.8, Tau_N = 1,
#Tau_NF = 0.5 and Tau_F = 0.64.
data(ex1)
r <- B2ZM_IMIS(data = ex1, priorBeta = "unif(0,10)",
priorQ="unif(11,17)", priorG = "unif(281,482)", S = diag(10,2),
v = 4, VN = pi*10^-3, VF = 3.8, N0 = 500, B = 50, M = 250,
it.max = 4)
plot(r)
summary(r)
#Saving figures with .pdf extension
## Not run:
# r <- B2ZM_IMIS(data = ex1, priorBeta = "unif(0,10)",
# priorQ = "unif(11,17)", priorG = "unif(281,482)", S = diag(10,2),
# v = 4, VN = pi*10^-3, VF = 3.8, N0 = 6000, B = 600, M = 3000,
# it.max = 12, figures = list(save = TRUE, type ="pdf"))
# ## End(Not run)
#####################
#Independent Model #
###################
#Data 2: 100 simulated concentrations during the times
#between 0 and 4, using the parameters Beta = 5, Q = 13.8,
#G = 351.5, VN = pi*10^-3, VF = 3.8, Tau_N = 1,
#Tau_NF = 0 and Tau_F = 0.64.
## Not run:
# data(ex2)
#
# r <- B2ZM_IMIS(data = ex2, indep.model = TRUE,
# priorBeta = "unif(0,10)", priorQ="unif(11,17)",
# priorG = "unif(281,482)", tauN.sh = 5 , tauN.sc = 4 ,
# tauF.sh = 5, tauF.sc = 7 , VN = pi*10^-3, VF = 3.8,
# N0 = 5000, B = 500, M = 3000, it.max = 12)
#
# plot(r)
# summary(r)## End(Not run)
Run the code above in your browser using DataLab