##################
#Dependent Model#
################
#Data 1: 100 simulated concentrations during the times
#between 0 and 4, using the parameters Beta = 5, Q = 13.8,
#G = 351.5, VN = pi*10^-3, VF = 3.8, Tau_N = 1,
#Tau_NF = 0.5 and Tau_F = 0.64.
data(ex1)
r <- B2ZM_SIR(data = ex1, priorBeta = "unif(0,10)",
priorQ="unif(11,17)", priorG = "unif(281,482)", S = diag(10,2),
v = 4, VN = pi*10^-3, VF = 3.8, m = 100 )
#plot(r)
#summary(r)
#Saving figures with .png extension
## Not run:
# r <- B2ZM_SIR(data = ex1, priorBeta = "unif(0,10)",
# priorQ = "unif(11,17)", priorG = "unif(281,482)",
# S = diag(10,2), v = 4, VN = pi*10^-3, VF = 3.8,
# m = 10000, figures = list(save = TRUE, type ="png"))
# ## End(Not run)
#####################
#Independent Model #
###################
#Data 2: 100 simulated concentrations during the times
#between 0 and 4, using the parameters Beta = 5, Q = 13.8,
#G = 351.5, VN = pi*10^-3, VF = 3.8, Tau_N = 1,
#Tau_NF = 0 and Tau_F = 0.64.
## Not run:
# data(ex2)
#
# r <- B2ZM_SIR(data = ex2, indep.model = TRUE,
# priorBeta = "unif(0,10)", priorQ="unif(11,17)",
# priorG = "unif(281,482)", tauN.sh = 5 , tauN.sc = 4 ,
# tauF.sh = 5, tauF.sc = 7 , VN = pi*10^-3,
# VF = 3.8, m = 100)
#
# plot(r)
# summary(r)
# ## End(Not run)
Run the code above in your browser using DataLab