BART is a Bayesian “sum-of-trees” model.
For a numeric response
In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it contributes a small amount to the overall fit.
# S3 method for criskbart
predict(object, newdata, newdata2, mc.cores=1, openmp=(mc.cores.openmp()>0), ...)
object
returned from previous BART fit with crisk.bart
or mc.crisk.bart
.
Matrix of covariates to predict the distribution of
Matrix of covariates to predict the distribution of
Number of threads to utilize.
Logical value dictating whether OpenMP is utilized for parallel
processing. Of course, this depends on whether OpenMP is available
on your system which, by default, is verified with mc.cores.openmp
.
Other arguments which will be passed on to pwbart
.
Returns an object of type criskbart
with predictions
corresponding to newdata
and newdata2
.
BART is an Bayesian MCMC method.
At each MCMC interation, we produce a draw from the joint posterior
Thus, unlike a lot of other modelling methods in R, we do not produce a single model object
from which fits and summaries may be extracted. The output consists of values
Chipman, H., George, E., and McCulloch R. (2010) Bayesian Additive Regression Trees. The Annals of Applied Statistics, 4,1, 266-298 <doi:10.1214/09-AOAS285>.
Chipman, H., George, E., and McCulloch R. (2006) Bayesian Ensemble Learning. Advances in Neural Information Processing Systems 19, Scholkopf, Platt and Hoffman, Eds., MIT Press, Cambridge, MA, 265-272.
Friedman, J.H. (1991) Multivariate adaptive regression splines. The Annals of Statistics, 19, 1--67.
# NOT RUN {
data(transplant)
delta <- (as.numeric(transplant$event)-1)
## recode so that delta=1 is cause of interest; delta=2 otherwise
delta[delta==1] <- 4
delta[delta==2] <- 1
delta[delta>1] <- 2
table(delta, transplant$event)
times <- pmax(1, ceiling(transplant$futime/7)) ## weeks
##times <- pmax(1, ceiling(transplant$futime/30.5)) ## months
table(times)
typeO <- 1*(transplant$abo=='O')
typeA <- 1*(transplant$abo=='A')
typeB <- 1*(transplant$abo=='B')
typeAB <- 1*(transplant$abo=='AB')
table(typeA, typeO)
x.train <- cbind(typeO, typeA, typeB, typeAB)
x.test <- cbind(1, 0, 0, 0)
dimnames(x.test)[[2]] <- dimnames(x.train)[[2]]
## parallel::mcparallel/mccollect do not exist on windows
if(.Platform$OS.type=='unix') {
##test BART with token run to ensure installation works
post <- mc.crisk.bart(x.train=x.train, times=times, delta=delta,
seed=99, mc.cores=2, nskip=5, ndpost=5,
keepevery=1)
pre <- surv.pre.bart(x.train=x.train, x.test=x.test,
times=times, delta=delta)
K <- post$K
pred <- mc.crisk.pwbart(pre$tx.test, pre$tx.test,
post$treedraws, post$treedraws2,
post$binaryOffset, post$binaryOffset2)
}
# }
# NOT RUN {
## run one long MCMC chain in one process
## set.seed(99)
## post <- crisk.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)
## in the interest of time, consider speeding it up by parallel processing
## run "mc.cores" number of shorter MCMC chains in parallel processes
post <- mc.crisk.bart(x.train=x.train,
times=times, delta=delta,
x.test=x.test, seed=99, mc.cores=8)
## check <- mc.crisk.pwbart(post$tx.test, post$tx.test,
## post$treedraws, post$treedraws2,
## post$binaryOffset,
## post$binaryOffset2, mc.cores=8)
check <- predict(post, newdata=post$tx.test, newdata2=post$tx.test2,
mc.cores=8)
print(c(post$surv.test.mean[1], check$surv.test.mean[1],
post$surv.test.mean[1]-check$surv.test.mean[1]), digits=22)
print(all(round(post$surv.test.mean, digits=9)==
round(check$surv.test.mean, digits=9)))
print(c(post$cif.test.mean[1], check$cif.test.mean[1],
post$cif.test.mean[1]-check$cif.test.mean[1]), digits=22)
print(all(round(post$cif.test.mean, digits=9)==
round(check$cif.test.mean, digits=9)))
print(c(post$cif.test2.mean[1], check$cif.test2.mean[1],
post$cif.test2.mean[1]-check$cif.test2.mean[1]), digits=22)
print(all(round(post$cif.test2.mean, digits=9)==
round(check$cif.test2.mean, digits=9)))
# }
Run the code above in your browser using DataLab