bas.lm(formula, data, n.models=NULL, prior="ZS-null", alpha=NULL,
modelprior=uniform(),
initprobs="Uniform", random=TRUE, method="BAS", update=NULL,
bestmodel = NULL, bestmarg = NULL, prob.local = 0,
Burnin.iterations = NULL, MCMC.iterations = NULL,
lambda = NULL, delta = 0.025)uniform
Bernoulli or beta.binomialbas returns an object of class BMA
An object of class BMA is a list containing at least the following components:predict.bma)summary.bma, is used to print a summary of
the results. The function plot.bma is used to plot
posterior distributions for the coefficients and
image.bma provides an image of the distribution over models.
Posterior summaries of coefficients can be extracted using
coefficients.bma. Fitted values and predictions can be
obtained using the functions fitted.bma and predict.bma.
BMA objects may be updated to use a different prior (without rerunning
the sampler) using the function update.bma.summary.bma,
coefficients.bma,
print.bma,
predict.bma,
fitted.bma
plot.bma,
image.bma,
eplogprob,
update.bmademo(BAS.hald)
demo(BAS.USCrime)Run the code above in your browser using DataLab