powered by
Estimates the parameters of a Bivariate Binomial Conditionals via Conditional Specification using maximum likelihood.
MLEbinomBCD(data, fixed_n1 = NULL, fixed_n2 = NULL, verbose = TRUE)
A list of class "MLEpoisBCD" containing:
"MLEpoisBCD"
n1
estimated n1
n2
estimated n2
p1
estimated p1
p2
estimated p2
lambda
estimated lambda
logLik
Maximum log-likelihood achieved.
AIC
Akaike Information Criterion.
BIC
Bayesian Information Criterion.
convergence
Convergence status from the optimizer (0 means successful).
A data frame or matrix with columns `X` and `Y`
known value of `n1` (NULL to estimate)
known value of `n2` (NULL to estimate)
logical; print progress
data <- rbinomBCD(n = 10,n1 = 5, n2 = 3, p1 = 0.6, p2 = 0.4, lambda = 1.2) MLEbinomBCD(data) MLEbinomBCD(data, fixed_n1 = 5, fixed_n2 = 3)
Run the code above in your browser using DataLab