# See Baio G., Dawid A.P. (2011) for a detailed description of the
# Bayesian model and economic problem
#
# Load the processed results of the MCMC simulation model
data(Vaccine)
#
# Runs the health economic evaluation using BCEA
m <- bcea(e=e,c=c, # defines the variables of
# effectiveness and cost
ref=2, # selects the 2nd row of (e,c)
# as containing the reference intervention
interventions=treats, # defines the labels to be associated
# with each intervention
Kmax=50000, # maximum value possible for the willingness
# to pay threshold; implies that k is chosen
# in a grid from the interval (0,Kmax)
plot=TRUE # plots the results
)
#
# Creates a summary table
summary(m, # uses the results of the economic evalaution
# (a "bcea" object)
wtp=25000 # selects the particular value for k
)
#
# Plots the cost-effectiveness plane using base graphics
ceplane.plot(m, # plots the Cost-Effectiveness plane
comparison=1, # if more than 2 interventions, selects the
# pairwise comparison
wtp=25000, # selects the relevant willingness to pay
# (default: 25,000)
graph="base" # selects base graphics (default)
)
#
# Plots the cost-effectiveness plane using ggplot2
if(requireNamespace("ggplot2")){
ceplane.plot(m, # plots the Cost-Effectiveness plane
comparison=1, # if more than 2 interventions, selects the
# pairwise comparison
wtp=25000, # selects the relevant willingness to pay
# (default: 25,000)
graph="ggplot2"# selects ggplot2 as the graphical engine
)
#
# Some more options
ceplane.plot(m,
graph="ggplot2",
pos="top",
size=5,
ICER.size=1.5,
label.pos=FALSE,
opt.theme=ggplot2::theme(text=ggplot2::element_text(size=8))
)
}
#
# Plots the contour and scatterplot of the bivariate
# distribution of (Delta_e,Delta_c)
contour(m, # uses the results of the economic evalaution
# (a "bcea" object)
comparison=1, # if more than 2 interventions, selects the
# pairwise comparison
nlevels=4, # selects the number of levels to be
# plotted (default=4)
levels=NULL, # specifies the actual levels to be plotted
# (default=NULL, so that R will decide)
scale=0.5, # scales the bandwiths for both x- and
# y-axis (default=0.5)
graph="base" # uses base graphics to produce the plot
)
#
# Plots the contour and scatterplot of the bivariate
# distribution of (Delta_e,Delta_c)
contour2(m, # uses the results of the economic evalaution
# (a "bcea" object)
wtp=25000, # selects the willingness-to-pay threshold
xl=NULL, # assumes default values
yl=NULL # assumes default values
)
#
# Using ggplot2
if(requireNamespace("ggplot2")){
contour2(m, # uses the results of the economic evalaution
# (a "bcea" object)
graph="ggplot2",# selects the graphical engine
wtp=25000, # selects the willingness-to-pay threshold
xl=NULL, # assumes default values
yl=NULL, # assumes default values
label.pos=FALSE # alternative position for the wtp label
)
}
#
# Plots the Expected Incremental Benefit for the "bcea" object m
eib.plot(m)
#
# Plots the distribution of the Incremental Benefit
ib.plot(m, # uses the results of the economic evalaution
# (a "bcea" object)
comparison=1, # if more than 2 interventions, selects the
# pairwise comparison
wtp=25000, # selects the relevant willingness
# to pay (default: 25,000)
graph="base" # uses base graphics
)
#
# Produces a plot of the CEAC against a grid of values for the
# willingness to pay threshold
ceac.plot(m)
#
# Plots the Expected Value of Information for the "bcea" object m
evi.plot(m)
#
Run the code above in your browser using DataLab