n=100; p=5
truK=diag(p)
for (i in 1:(p-1)) truK[i,i+1]=truK[i+1,i]=0.5
truK[1,p]=truK[p,1]=0.4
data=mvrnorm(n,c(rep(0,p)),solve(truK))
data(output.low)
output <- output.low
output = BDMCMC.low(data)
# Posterior probability for all possible links in the graph
round(Phat(output),2)
Run the code above in your browser using DataLab