I.g: Computing normalizing constant of G-Wishart distribution
Description
Monte Carlo method for approximating the normalizing constant of G-Wishart
distribution. The function uses the Monte Carlo method of Atay-Kayis and Massam (2005).
Usage
I.g(A, b, D, MCiter = 500)
Arguments
A
upper triangular matrix in which $a_{ij}=1$ if there is a link between notes $i$ and
$j$, otherwise $a_{ij}=0$.
b
the degree of freedom for G-Wishart distribution, $W_G(b,D)$.
D
the positive definite matrix for G-Wishart distribution, $W_G(b,D)$.
MCiter
the number of iterations for the Monte Carlo approximation.
Value
the normalizing constant of G-Wishart distribution.
References
Mohammadi, A. and E. C. Wit (2012). Gaussian graphical model determination based on birth-death
MCMC inference, arXiv:1210.5371v4. http://arxiv.org/abs/1210.5371v4
Atay-Kayis, A. and H. Massam (2005). A monte carlo method for computing the
marginal likelihood in nondecomposable gaussian graphical models. Biometrika
92(2), 317-335.