p <- 8 # number of nodes
# "truK" is the precision matrix of true graph
truK <- diag(p)
for (i in 1:(p-1)) truK[i,i+1] <- truK[i+1,i] <- 0.5
truK[1,p] <- truK[p,1] <- 0.4
truK # precision matrix of the true graph
# generate the data (200 observations) from multivariate normal
# distribution with mean zero and percision matrix "truK"
data <- mvrnorm(200, c(rep(0,p)), solve(truK))
output <- bdmcmc(data, meanzero = T, iter = 2000, all.A = TRUE)
# we run it for skip = 5. For skip = 1, it takes more time.
plotConvergency(output, skip = 5)
Run the code above in your browser using DataLab