
Last chance! 50% off unlimited learning
Sale ends in
Provides the estimated precision matrix.
precision( bdgraph.obj, round = 2 )
matrix which corresponds the estimated precision matrix.
object of S3
class "bdgraph
", from function bdgraph
.
It also can be an object of S3
class "ssgraph"
, from the function ssgraph::ssgraph()
of R
package ssgraph::ssgraph()
.
value for rounding all probabilities to the specified number of decimal places.
Reza Mohammadi a.mohammadi@uva.nl
Mohammadi, R. and Wit, E. C. (2019). BDgraph: An R
Package for Bayesian Structure Learning in Graphical Models, Journal of Statistical Software, 89(3):1-30, tools:::Rd_expr_doi("10.18637/jss.v089.i03")
Mohammadi, A. and Wit, E. C. (2015). Bayesian Structure Learning in Sparse Gaussian Graphical Models, Bayesian Analysis, 10(1):109-138, tools:::Rd_expr_doi("10.1214/14-BA889")
Mohammadi, R., Massam, H. and Letac, G. (2021). Accelerating Bayesian Structure Learning in Sparse Gaussian Graphical Models, Journal of the American Statistical Association, tools:::Rd_expr_doi("10.1080/01621459.2021.1996377")
Dobra, A. and Mohammadi, R. (2018). Loglinear Model Selection and Human Mobility, Annals of Applied Statistics, 12(2):815-845, tools:::Rd_expr_doi("10.1214/18-AOAS1164")
Mohammadi, A. et al (2017). Bayesian modelling of Dupuytren disease by using Gaussian copula graphical models, Journal of the Royal Statistical Society: Series C, 66(3):629-645, tools:::Rd_expr_doi("10.1111/rssc.12171")
bdgraph
, covariance
, plinks
if (FALSE) {
# Generating multivariate normal data from a 'circle' graph
data.sim <- bdgraph.sim( n = 70, p = 6, graph = "circle", vis = TRUE )
bdgraph.obj <- bdgraph( data = data.sim )
precision( bdgraph.obj ) # Estimated precision matrix
data.sim $ K # True precision matrix
}
Run the code above in your browser using DataLab