Learn R Programming

BDgraph (version 2.70)

rwish: Sampling from Wishart distribution

Description

Generates random matrices, distributed according to the Wishart distribution with parameters \(b\) and \(D\), \(W(b, D)\).

Usage

rwish( n = 1, p = 2, b = 3, D = diag( p ) )

Value

A numeric array, say \(A\), of dimension \((p \times p \times n)\), where each \(A[,,i]\) is a positive definite matrix, a realization of the Wishart distribution \(W(b, D)\). Note, for the case \(n=1\), the output is a matrix.

Arguments

n

number of samples required.

p

number of variables (nodes).

b

degree of freedom for Wishart distribution, \(W(b, D)\).

D

positive definite \((p \times p)\) "scale" matrix for Wishart distribution, \(W(b, D)\). The default is an identity matrix.

Author

Reza Mohammadi a.mohammadi@uva.nl

Details

Sampling from Wishart distribution, \(K \sim W(b, D)\), with density:

$$Pr(K) \propto |K| ^ {(b - 2) / 2} \exp \left\{- \frac{1}{2} \mbox{trace}(K \times D)\right\},$$

which \(b > 2\) is the degree of freedom and \(D\) is a symmetric positive definite matrix.

References

Lenkoski, A. (2013). A direct sampler for G-Wishart variates, Stat, 2:119-128, tools:::Rd_expr_doi("10.1002/sta4.23")

Mohammadi, A. and Wit, E. C. (2015). Bayesian Structure Learning in Sparse Gaussian Graphical Models, Bayesian Analysis, 10(1):109-138, tools:::Rd_expr_doi("10.1214/14-BA889")

Mohammadi, R., Massam, H. and Letac, G. (2021). Accelerating Bayesian Structure Learning in Sparse Gaussian Graphical Models, Journal of the American Statistical Association, tools:::Rd_expr_doi("10.1080/01621459.2021.1996377")

Mohammadi, R. and Wit, E. C. (2019). BDgraph: An R Package for Bayesian Structure Learning in Graphical Models, Journal of Statistical Software, 89(3):1-30, tools:::Rd_expr_doi("10.18637/jss.v089.i03")

See Also

gnorm, rgwish

Examples

Run this code
sample <- rwish( n = 3, p = 5, b = 3, D = diag( 5 ) )

round( sample, 2 )  

Run the code above in your browser using DataLab