Generates random matrices, distributed according to the Wishart distribution with parameters \(b\) and \(D\), \(W(b, D)\).
rwish( n = 1, p = 2, b = 3, D = diag( p ) )
A numeric array, say \(A\), of dimension \((p \times p \times n)\), where each \(A[,,i]\) is a positive definite matrix, a realization of the Wishart distribution \(W(b, D)\). Note, for the case \(n=1\), the output is a matrix.
number of samples required.
number of variables (nodes).
degree of freedom for Wishart distribution, \(W(b, D)\).
positive definite \((p \times p)\) "scale" matrix for Wishart distribution, \(W(b, D)\). The default is an identity matrix.
Reza Mohammadi a.mohammadi@uva.nl
Sampling from Wishart distribution, \(K \sim W(b, D)\), with density:
$$Pr(K) \propto |K| ^ {(b - 2) / 2} \exp \left\{- \frac{1}{2} \mbox{trace}(K \times D)\right\},$$
which \(b > 2\) is the degree of freedom and \(D\) is a symmetric positive definite matrix.
Lenkoski, A. (2013). A direct sampler for G-Wishart variates, Stat, 2:119-128, tools:::Rd_expr_doi("10.1002/sta4.23")
Mohammadi, A. and Wit, E. C. (2015). Bayesian Structure Learning in Sparse Gaussian Graphical Models, Bayesian Analysis, 10(1):109-138, tools:::Rd_expr_doi("10.1214/14-BA889")
Mohammadi, R., Massam, H. and Letac, G. (2021). Accelerating Bayesian Structure Learning in Sparse Gaussian Graphical Models, Journal of the American Statistical Association, tools:::Rd_expr_doi("10.1080/01621459.2021.1996377")
Mohammadi, R. and Wit, E. C. (2019). BDgraph: An R
Package for Bayesian Structure Learning in Graphical Models, Journal of Statistical Software, 89(3):1-30, tools:::Rd_expr_doi("10.18637/jss.v089.i03")
gnorm
, rgwish
sample <- rwish( n = 3, p = 5, b = 3, D = diag( 5 ) )
round( sample, 2 )
Run the code above in your browser using DataLab