Learn R Programming

BE (version 0.2.4)

BE-package: Bioequivalence Study Data Analysis

Description

Analyze bioequivalence study data with industrial strength. Sample size could be determined for various crossover designs, such as 2x2 design, 2x4 design, 4x4 design, Balaam design, Two-sequence dual design, and William design. Basic assumption is that the variable is distributed as a log-normal distribution. This is SAS PROC GLM style. If you want PROC MIXED style, use nlme::lme.

Arguments

Author

Kyun-Seop Bae <k@acr.kr>

Details

It performs bioequivalency tests for several variables of a 2x2 study in a data file.

References

  1. Chow SC, Liu JP. Design and Analysis of Bioavailability and Bioequivalence Studies. 3rd ed. (2009, ISBN:978-1-58488-668-6)

  2. Hauschke D, Steinijans V, Pigeot I. Bioequivalence Studies in Drug Development. (2007, ISBN:978-0-470-09475-4)

  3. Diletti E, Hauschke D, Steinijans VW. Sample size determination for bioequivalence assessment by means of confidence intervals. Int J Clinical Pharmacol Ther Tox. 1991;29(1):1-8

Examples

Run this code
# write.csv(NCAResult4BE, "temp.csv", quote=FALSE, row.names=FALSE)
# be2x2("temp.csv", c("AUClast", "Cmax", "Tmax"))

Run the code above in your browser using DataLab