data(BEclearData)
## Calculate median comparison values in non-parallel mode
med <- calcMedians(data=ex.data, samples=ex.samples, parallel=FALSE)
## Calculate fdr-adjusted p-values in non-parallel mode
pvals <- calcPvalues(data=ex.data, samples=ex.samples, parallel=FALSE,
adjusted=TRUE, method="fdr")
## Summarize p-values and median differences for batch affected genes
sum <- calcSummary(medians=med, pvalues=pvals)
## Calculates the score table
score.table <- calcScore(data=ex.data, samples=ex.samples, summary=sum)
## Simple boxplot for the example data separated by batch
makeBoxplot(data=ex.data, samples=ex.samples, score=score.table,
bySamples=FALSE, main="Some box plot")
## Simple boxplot for the example data separated by samples
makeBoxplot(data=ex.data, samples=ex.samples, score=score.table,
bySamples=TRUE, main="Some box plot")
## Sets assumed batch affected entries to NA
cleared <- clearBEgenes(data=ex.data, samples=ex.samples, summary=sum)
## Counts and stores number of entries to predict
numberOfEntries <- countValuesToPredict(data=cleared)
## Not run:
# ## Predicts the missing entries
# predicted <- BEclear(data=cleared)
#
# ## Find wrongly predicted entries
# wrongEntries <- findWrongValues(data=predicted)
#
# ## Replace wrongly predicted entries
# corrected <- replaceWrongValues(data=predicted)
# ## End(Not run)
Run the code above in your browser using DataLab