#----------------
# Data Simulation
#----------------
X <- data.frame(x1=rnorm(50), # standard normal variable
x2=sample(0:2, 50, replace=TRUE), # categorical variable
x3=sample(0:1, 50, replace=TRUE)) # dichotomous variable
X$x2 <- as.factor(X$x2)
X$x3 <- as.factor(X$x3)
# The (inverse) variance value (lambda=0.05) is assumed to be
# the same for Gaussian prior of all parameters (for non-stratified)
#-------------------------------------------------
# Inverse Covariance Matrix for the Gaussian prior
#-------------------------------------------------
# y ~ Binomial with 'intercept'
inv.prior.cov(X, lambda = 0.05, family = 'binomial')
# returns a 5-by-5 matrix
# y ~ Binomial without 'intercept'
inv.prior.cov(X, lambda = 0.05, family = "binomial", intercept = FALSE)
# a 4-by-4 matrix
# y ~ Gaussian with 'intercept'
inv.prior.cov(X, lambda = 0.05, family = 'gaussian')
# returns a 6-by-6 matrix
# Survival family with 'weibul' baseline hazard
inv.prior.cov(X, lambda = c(0.05, 0.1), family = 'survival')
# returns a 6-by-6 matrix
# Survival family with 'pwexp' baseline hazard (4 intervals)
inv.prior.cov(X, lambda = 0.05, family = 'survival', basehaz = "pwexp")
# returns a 8-by-8 matrix
# Survival family with 'poly' baseline hazard
inv.prior.cov(X, lambda = c(0.05, 0.1), family = 'survival', basehaz = "poly")
# returns a 7-by-7 matrix
#--------------------
# Stratified analysis
#--------------------
# y ~ Binomial when 'intercept' varies across 3 centers:
inv.prior.cov(X, lambda = c(.2, 1), family = 'binomial', stratified = TRUE,
strat_par = 1, L = 3)
# y ~ Gaussian when 'intercept' and 'sigma2' vary across 2 centers; y ~ Gaussian
inv.prior.cov(X, lambda = c(1, 2, 3), family = "gaussian", stratified = TRUE,
strat_par = c(1, 2))
# y ~ Gaussian when 'sigma2' varies across 2 centers (with 'intercept')
inv.prior.cov(X, lambda = c(1, 2, 3), family='gaussian', stratified = TRUE,
strat_par = 2)
# y ~ Gaussian when 'sigma2' varies across 2 centers (without 'intercept')
inv.prior.cov(X, lambda = c(2, 3), family = "gaussian", intercept = FALSE,
stratified=TRUE, strat_par = 2)
#--------------------------
# Center specific covariate
#--------------------------
# center specific covariate has K = 2 categories across 4 centers; y ~ Binomial
inv.prior.cov(X, lambda = c(0.1:2), family = 'binomial', stratified = TRUE,
center_spec = c("Iran","Netherlands","Netherlands","Iran"), L=4)
# center specific covariate has K = 3 categories across 5 centers; y ~ Gaussian
inv.prior.cov(X, lambda = c(0.5:3), family = 'gaussian', stratified = TRUE,
center_spec = c("Medium","Big","Small","Big","Small"), L = 5)
# center specific covariate has K = 4 categories across 5 centers; y ~ Gaussian
inv.prior.cov(X, lambda = 1, family = 'gaussian', stratified = TRUE,
center_spec = c(3,1:4), L=5)
Run the code above in your browser using DataLab